blob: 917df662430b5025b04306353295bfe54ae156ce (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
use crate::ast::*;
// (λx:T.y): T z
pub fn parse(input: &str) -> Expression {
return parse_str(input).expect("invalid expression");
}
/// Parses a lambda-calculus-like language into an AST.
pub fn parse_str(input: &str) -> Result<Expression, peg::error::ParseError<peg::str::LineCol>> {
// this is kinda awful
// i miss my nim pegs
peg::parser!{
grammar lambda() for str {
rule identifier() -> String
= i:['a'..='z' | 'A'..='Z' | '0'..='9']+ {
i.iter().collect::<String>()
}
rule constant() -> Expression
= p:"-"? c:['0'..='9']+ {
let value = c.iter().collect::<String>().parse::<Value>().unwrap();
Expression::Constant {
term: Term {
val: if let Some(_) = p {
value.wrapping_neg()
} else {
value
},
kind: Type::Empty
}
}
}
// fucking awful but i don't know another way
// k:("empty" / "unit" / etc) returns ()
// and i can't seem to match and raise a parse error
// so ¯\_(ツ)_/¯
rule empty() -> Type = k:"empty" {Type::Empty}
rule unit() -> Type = k:"unit" {Type::Unit}
rule boolean() -> Type = k:"bool" {Type::Boolean}
rule natural() -> Type = k:"nat" {Type::Natural}
rule integer() -> Type = k:"int" {Type::Integer}
rule kind() -> Type
= k:(empty() / unit() / boolean() / natural() / integer()) {
k
}
rule annotation() -> Expression
= e:(conditional() / abstraction() / application() / constant() / variable()) " "* ":" " "* k:kind() {
Expression::Annotation {
expr: Box::new(e),
kind: k
}
}
rule variable() -> Expression
= v:identifier() {
Expression::Variable {
id: v
}
}
rule abstraction() -> Expression
= ("λ" / "lambda ") " "* p:identifier() " "* "." " "* f:expression() {
Expression::Abstraction {
param: p,
func: Box::new(f)
}
}
// fixme: more cases should parse, but how?
rule application() -> Expression
= "(" f:(annotation() / abstraction()) ")" " "* a:expression() {
Expression::Application {
func: Box::new(f),
arg: Box::new(a)
}
}
rule conditional() -> Expression
= "if" " "+ c:expression() " "+ "then" " "+ t:expression() " "+ "else" " "+ e:expression() {
Expression::Conditional {
if_cond: Box::new(c),
if_then: Box::new(t),
if_else: Box::new(e)
}
}
pub rule expression() -> Expression
= e:(conditional() / annotation() / abstraction() / application() / constant() / variable()) {
e
}
pub rule ast() -> Vec<Expression>
= expression() ** ("\n"+)
}
}
// assert_eq!(lambda::expression("(λx:bool.x)").unwrap(), lambda::expression("(λx: bool . x)").unwrap());
return lambda::expression(input.trim());
}
/// Parses a Nim-like language into an AST.
#[allow(unused_variables)]
pub fn parse_file(path: &str) -> Vec<Expression> {
todo!();
}
|