diff options
author | Braxton Hall | 2022-10-24 22:22:37 +0000 |
---|---|---|
committer | GitHub | 2022-10-24 22:22:37 +0000 |
commit | b4d8f8e9124e78acb5fa360d1c95633e1091b48b (patch) | |
tree | 7dd14589bf361ffb6cd3f2224bd0cb16b332a9a9 /entries/rxg | |
parent | 89bd4035db8c9979b1f3c76a9aee951204f3ef59 (diff) | |
parent | 8ffac10bf733f5f75bf85750562710c1cd60cf0a (diff) |
Merge pull request #28 from braxtonhall/rxg
Add Ron
Diffstat (limited to 'entries/rxg')
-rw-r--r-- | entries/rxg/fib.rkt | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/entries/rxg/fib.rkt b/entries/rxg/fib.rkt new file mode 100644 index 0000000..61373cd --- /dev/null +++ b/entries/rxg/fib.rkt @@ -0,0 +1,132 @@ +#lang racket + +;; fib.rkt - A variety of iterative implementations of the Fibonacci Sequence +;; All are based on accumulators + +;; Natural -> Natural +;; produce the n'th Fibonacci number +(define (fib-iter n) + (cond + [(= n 0) 1] + [(= n 1) 1] + [else + (let-values ([(n-2 n-1) + ;; i-2 = fib (i-2) + ;; i-1 = fib (i-1) + (for/fold ([i-2 1] [i-1 1]) + ([i (in-range 2 n)]) + (values i-1 (+ i-2 i-1)))]) + (+ n-2 n-1))])) + + +(define (fib-iter2 n) + (cond + [(= n 0) 1] + [(= n 1) 1] + [else + ;; i-2 = fib (i-2) + ;; i-1 = fib (i-1) + (let loop ([i-2 1] [i-1 1] [i 2]) + (if (= i n) + (+ i-2 i-1) + (loop i-1 (+ i-2 i-1) (add1 i))))])) + +(define (fib-iter3 n) + (cond + [(= n 0) 1] + [(= n 1) 1] + [else + ;; i-2 = fib (i-2) + ;; i-1 = fib (i-1) + (do ([i-2 1 i-1] + [i-1 1 (+ i-2 i-1)] + [i 2 (add1 i)]) + [(= i n) + (+ i-2 i-1)])])) + +;; New variant of for with accumulators and a final expression in terms of +;; the accumulators +(define-syntax (for/acc stx) + (syntax-case stx () + [(_ ([id* init*] ...) + (clauses ...) + body + result) + (with-syntax ([original stx]) + #'(let-values ([(id* ...) + (for/fold/derived original + ([id* init*] ...) + (clauses ...) + body)]) + result))])) + +(define (fib-iter4 n) + (cond + [(= n 0) 1] + [(= n 1) 1] + [else + ;; i-2 = fib (i-2) + ;; i-1 = fib (i-1) + (for/acc ([i-2 1] [i-1 1]) + ([i (in-range 2 n)]) + (values i-1 (+ i-2 i-1)) + (+ i-2 i-1))])) + +;; New variant of for with accumulators and a final expression in terms of +;; the accumulators +(define-syntax (for/do stx) + (syntax-case stx () + [(_ ([id* init* step*] ...) + (clauses ...) + result) + (with-syntax ([original stx]) + #'(let-values ([(id* ...) + (for/fold/derived original + ([id* init*] ...) + (clauses ...) + (values step* ...))]) + result))])) + +(define (fib-iter5 n) + (cond + [(= n 0) 1] + [(= n 1) 1] + [else + ;; i-2 = fib (i-2) + ;; i-1 = fib (i-1) + (for/do ([i-2 1 i-1] [i-1 1 (+ i-2 i-1)]) + ([i (in-range 2 n)]) + (+ i-2 i-1))])) + + +;; Fibonacci's problem, as described by Greg Rawlins in "Compared to What": +;; Suppose you have a pair of rabbits and suppose every month each pair +;; bears a new pair that from the second month on becomes productive. +;; how many pairs of rabbits will you have in a year? + +;; Analysis: +;; - At time 0 you have 1 unproductive pair: 1 pair, 0 productive pairs +;; - Each month, each productive pair produces an unproductive pair +;; - Each month, last months unproductive pairs transition to productive +;; - how many pairs are there at time step 12? + +;; The following function solves the problem *directly* as a +;; structural recursion over natural numbers with two +;; accumulators (for lost context (fertile) and result-so-far (total)) + +;; Natural -> Natural +;; produce the solution to Fibonacci's problem after n months +(define (fib-rabbit n0) + ;; Accumulator: total is Natural + ;; Invariant: total pairs of rabbits after (- n0 n) months + ;; Accumulator: fertile is Natural + ;; Invariant: productive pairs of rabbits after (- n0 n) months + (local [(define (fib-acc fertile total n) + (cond [(zero? n) total] + [else + (fib-acc total ;; next month, all will be productive + (+ ;; next months pairs include: + total ;; - this months pairs plus + fertile) ;; - offspring from productive pairs + (sub1 n))]))] + (fib-acc 0 1 n0))) |