//! Selections are the primary editing construct. Even cursors are //! defined as a selection range. //! //! All positioning is done via `char` offsets into the buffer. use crate::{ graphemes::{ ensure_grapheme_boundary_next, ensure_grapheme_boundary_prev, next_grapheme_boundary, prev_grapheme_boundary, }, movement::Direction, Assoc, ChangeSet, RopeGraphemes, RopeSlice, }; use smallvec::{smallvec, SmallVec}; use std::borrow::Cow; /// A single selection range. /// /// A range consists of an "anchor" and "head" position in /// the text. The head is the part that the user moves when /// directly extending a selection. The head and anchor /// can be in any order, or even share the same position. /// /// The anchor and head positions use gap indexing, meaning /// that their indices represent the gaps *between* `char`s /// rather than the `char`s themselves. For example, 1 /// represents the position between the first and second `char`. /// /// Below are some examples of `Range` configurations. /// The anchor and head indices are shown as "(anchor, head)" /// tuples, followed by example text with "[" and "]" symbols /// representing the anchor and head positions: /// /// - (0, 3): `[Som]e text`. /// - (3, 0): `]Som[e text`. /// - (2, 7): `So[me te]xt`. /// - (1, 1): `S[]ome text`. /// /// Ranges are considered to be inclusive on the left and /// exclusive on the right, regardless of anchor-head ordering. /// This means, for example, that non-zero-width ranges that /// are directly adjacent, sharing an edge, do not overlap. /// However, a zero-width range will overlap with the shared /// left-edge of another range. /// /// By convention, user-facing ranges are considered to have /// a block cursor on the head-side of the range that spans a /// single grapheme inward from the range's edge. There are a /// variety of helper methods on `Range` for working in terms of /// that block cursor, all of which have `cursor` in their name. #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct Range { /// The anchor of the range: the side that doesn't move when extending. pub anchor: usize, /// The head of the range, moved when extending. pub head: usize, /// The previous visual offset (softwrapped lines and columns) from /// the start of the line pub old_visual_position: Option<(u32, u32)>, } impl Range { pub fn new(anchor: usize, head: usize) -> Self { Self { anchor, head, old_visual_position: None, } } pub fn point(head: usize) -> Self { Self::new(head, head) } /// Start of the range. #[inline] #[must_use] pub fn from(&self) -> usize { std::cmp::min(self.anchor, self.head) } /// End of the range. #[inline] #[must_use] pub fn to(&self) -> usize { std::cmp::max(self.anchor, self.head) } /// Total length of the range. #[inline] #[must_use] pub fn len(&self) -> usize { self.to() - self.from() } /// The (inclusive) range of lines that the range overlaps. #[inline] #[must_use] pub fn line_range(&self, text: RopeSlice) -> (usize, usize) { let from = self.from(); let to = if self.is_empty() { self.to() } else { prev_grapheme_boundary(text, self.to()).max(from) }; (text.char_to_line(from), text.char_to_line(to)) } /// `true` when head and anchor are at the same position. #[inline] pub fn is_empty(&self) -> bool { self.anchor == self.head } /// `Direction::Backward` when head < anchor. /// `Direction::Backward` otherwise. #[inline] #[must_use] pub fn direction(&self) -> Direction { if self.head < self.anchor { Direction::Backward } else { Direction::Forward } } /// Flips the direction of the selection pub fn flip(&self) -> Self { Self { anchor: self.head, head: self.anchor, old_visual_position: self.old_visual_position, } } /// Returns the selection if it goes in the direction of `direction`, /// flipping the selection otherwise. pub fn with_direction(self, direction: Direction) -> Self { if self.direction() == direction { self } else { self.flip() } } /// Check two ranges for overlap. #[must_use] pub fn overlaps(&self, other: &Self) -> bool { // To my eye, it's non-obvious why this works, but I arrived // at it after transforming the slower version that explicitly // enumerated more cases. The unit tests are thorough. self.from() == other.from() || (self.to() > other.from() && other.to() > self.from()) } #[inline] pub fn contains_range(&self, other: &Self) -> bool { self.from() <= other.from() && self.to() >= other.to() } pub fn contains(&self, pos: usize) -> bool { self.from() <= pos && pos < self.to() } /// Map a range through a set of changes. Returns a new range representing /// the same position after the changes are applied. Note that this /// function runs in O(N) (N is number of changes) and can therefore /// cause performance problems if run for a large number of ranges as the /// complexity is then O(MN) (for multicuror M=N usually). Instead use /// [Selection::map] or [ChangeSet::update_positions] instead pub fn map(mut self, changes: &ChangeSet) -> Self { use std::cmp::Ordering; if changes.is_empty() { return self; } let positions_to_map = match self.anchor.cmp(&self.head) { Ordering::Equal => [ (&mut self.anchor, Assoc::After), (&mut self.head, Assoc::After), ], Ordering::Less => [ (&mut self.anchor, Assoc::After), (&mut self.head, Assoc::Before), ], Ordering::Greater => [ (&mut self.head, Assoc::After), (&mut self.anchor, Assoc::Before), ], }; changes.update_positions(positions_to_map.into_iter()); self.old_visual_position = None; self } /// Extend the range to cover at least `from` `to`. #[must_use] pub fn extend(&self, from: usize, to: usize) -> Self { debug_assert!(from <= to); if self.anchor <= self.head { Self { anchor: self.anchor.min(from), head: self.head.max(to), old_visual_position: None, } } else { Self { anchor: self.anchor.max(to), head: self.head.min(from), old_visual_position: None, } } } /// Returns a range that encompasses both input ranges. /// /// This is like `extend()`, but tries to negotiate the /// anchor/head ordering between the two input ranges. #[must_use] pub fn merge(&self, other: Self) -> Self { if self.anchor > self.head && other.anchor > other.head { Range { anchor: self.anchor.max(other.anchor), head: self.head.min(other.head), old_visual_position: None, } } else { Range { anchor: self.from().min(other.from()), head: self.to().max(other.to()), old_visual_position: None, } } } // groupAt /// Returns the text inside this range given the text of the whole buffer. /// /// The returned `Cow` is a reference if the range of text is inside a single /// chunk of the rope. Otherwise a copy of the text is returned. Consider /// using `slice` instead if you do not need a `Cow` or `String` to avoid copying. #[inline] pub fn fragment<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> Cow<'b, str> { self.slice(text).into() } /// Returns the text inside this range given the text of the whole buffer. /// /// The returned value is a reference to the passed slice. This method never /// copies any contents. #[inline] pub fn slice<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> RopeSlice<'b> { text.slice(self.from()..self.to()) } //-------------------------------- // Alignment methods. /// Compute a possibly new range from this range, with its ends /// shifted as needed to align with grapheme boundaries. /// /// Zero-width ranges will always stay zero-width, and non-zero-width /// ranges will never collapse to zero-width. #[must_use] pub fn grapheme_aligned(&self, slice: RopeSlice) -> Self { use std::cmp::Ordering; let (new_anchor, new_head) = match self.anchor.cmp(&self.head) { Ordering::Equal => { let pos = ensure_grapheme_boundary_prev(slice, self.anchor); (pos, pos) } Ordering::Less => ( ensure_grapheme_boundary_prev(slice, self.anchor), ensure_grapheme_boundary_next(slice, self.head), ), Ordering::Greater => ( ensure_grapheme_boundary_next(slice, self.anchor), ensure_grapheme_boundary_prev(slice, self.head), ), }; Range { anchor: new_anchor, head: new_head, old_visual_position: if new_anchor == self.anchor { self.old_visual_position } else { None }, } } /// Compute a possibly new range from this range, attempting to ensure /// a minimum range width of 1 char by shifting the head in the forward /// direction as needed. /// /// This method will never shift the anchor, and will only shift the /// head in the forward direction. Therefore, this method can fail /// at ensuring the minimum width if and only if the passed range is /// both zero-width and at the end of the `RopeSlice`. /// /// If the input range is grapheme-boundary aligned, the returned range /// will also be. Specifically, if the head needs to shift to achieve /// the minimum width, it will shift to the next grapheme boundary. #[must_use] #[inline] pub fn min_width_1(&self, slice: RopeSlice) -> Self { if self.anchor == self.head { Range { anchor: self.anchor, head: next_grapheme_boundary(slice, self.head), old_visual_position: self.old_visual_position, } } else { *self } } //-------------------------------- // Block-cursor methods. /// Gets the left-side position of the block cursor. #[must_use] #[inline] pub fn cursor(self, text: RopeSlice) -> usize { if self.head > self.anchor { prev_grapheme_boundary(text, self.head) } else { self.head } } /// Puts the left side of the block cursor at `char_idx`, optionally extending. /// /// This follows "1-width" semantics, and therefore does a combination of anchor /// and head moves to behave as if both the front and back of the range are 1-width /// blocks /// /// This method assumes that the range and `char_idx` are already properly /// grapheme-aligned. #[must_use] #[inline] pub fn put_cursor(self, text: RopeSlice, char_idx: usize, extend: bool) -> Range { if extend { let anchor = if self.head >= self.anchor && char_idx < self.anchor { next_grapheme_boundary(text, self.anchor) } else if self.head < self.anchor && char_idx >= self.anchor { prev_grapheme_boundary(text, self.anchor) } else { self.anchor }; if anchor <= char_idx { Range::new(anchor, next_grapheme_boundary(text, char_idx)) } else { Range::new(anchor, char_idx) } } else { Range::point(char_idx) } } /// The line number that the block-cursor is on. #[inline] #[must_use] pub fn cursor_line(&self, text: RopeSlice) -> usize { text.char_to_line(self.cursor(text)) } /// Returns true if this Range covers a single grapheme in the given text pub fn is_single_grapheme(&self, doc: RopeSlice) -> bool { let mut graphemes = RopeGraphemes::new(doc.slice(self.from()..self.to())); let first = graphemes.next(); let second = graphemes.next(); first.is_some() && second.is_none() } } impl From<(usize, usize)> for Range { fn from((anchor, head): (usize, usize)) -> Self { Self { anchor, head, old_visual_position: None, } } } /// A selection consists of one or more selection ranges. /// invariant: A selection can never be empty (always contains at least primary range). #[derive(Debug, Clone, PartialEq, Eq)] pub struct Selection { ranges: SmallVec<[Range; 1]>, primary_index: usize, } #[allow(clippy::len_without_is_empty)] // a Selection is never empty impl Selection { // eq #[inline] #[must_use] pub fn primary(&self) -> Range { self.ranges[self.primary_index] } #[inline] #[must_use] pub fn primary_mut(&mut self) -> &mut Range { &mut self.ranges[self.primary_index] } /// Ensure selection containing only the primary selection. pub fn into_single(self) -> Self { if self.ranges.len() == 1 { self } else { Self { ranges: smallvec![self.ranges[self.primary_index]], primary_index: 0, } } } /// Adds a new range to the selection and makes it the primary range. pub fn push(mut self, range: Range) -> Self { self.ranges.push(range); self.set_primary_index(self.ranges().len() - 1); self.normalize() } /// Removes a range from the selection. pub fn remove(mut self, index: usize) -> Self { assert!( self.ranges.len() > 1, "can't remove the last range from a selection!" ); self.ranges.remove(index); if index < self.primary_index || self.primary_index == self.ranges.len() { self.primary_index -= 1; } self } /// Replace a range in the selection with a new range. pub fn replace(mut self, index: usize, range: Range) -> Self { self.ranges[index] = range; self.normalize() } /// Map selections over a set of changes. Useful for adjusting the selection position after /// applying changes to a document. pub fn map(self, changes: &ChangeSet) -> Self { self.map_no_normalize(changes).normalize() } /// Map selections over a set of changes. Useful for adjusting the selection position after /// applying changes to a document. Doesn't normalize the selection pub fn map_no_normalize(mut self, changes: &ChangeSet) -> Self { if changes.is_empty() { return self; } let positions_to_map = self.ranges.iter_mut().flat_map(|range| { use std::cmp::Ordering; range.old_visual_position = None; match range.anchor.cmp(&range.head) { Ordering::Equal => [ (&mut range.anchor, Assoc::After), (&mut range.head, Assoc::After), ], Ordering::Less => [ (&mut range.anchor, Assoc::After), (&mut range.head, Assoc::Before), ], Ordering::Greater => [ (&mut range.head, Assoc::After), (&mut range.anchor, Assoc::Before), ], } }); changes.update_positions(positions_to_map); self } pub fn ranges(&self) -> &[Range] { &self.ranges } pub fn primary_index(&self) -> usize { self.primary_index } pub fn set_primary_index(&mut self, idx: usize) { assert!(idx < self.ranges.len()); self.primary_index = idx; } #[must_use] /// Constructs a selection holding a single range. pub fn single(anchor: usize, head: usize) -> Self { Self { ranges: smallvec![Range { anchor, head, old_visual_position: None }], primary_index: 0, } } /// Constructs a selection holding a single cursor. pub fn point(pos: usize) -> Self { Self::single(pos, pos) } /// Normalizes a `Selection`. fn normalize(mut self) -> Self { if self.len() < 2 { return self; } let mut primary = self.ranges[self.primary_index]; self.ranges.sort_unstable_by_key(Range::from); self.ranges.dedup_by(|curr_range, prev_range| { if prev_range.overlaps(curr_range) { let new_range = curr_range.merge(*prev_range); if prev_range == &primary || curr_range == &primary { primary = new_range; } *prev_range = new_range; true } else { false } }); self.primary_index = self .ranges .iter() .position(|&range| range == primary) .unwrap(); self } /// Replaces ranges with one spanning from first to last range. pub fn merge_ranges(self) -> Self { let first = self.ranges.first().unwrap(); let last = self.ranges.last().unwrap(); Selection::new(smallvec![first.merge(*last)], 0) } /// Merges all ranges that are consecutive. pub fn merge_consecutive_ranges(mut self) -> Self { let mut primary = self.ranges[self.primary_index]; self.ranges.dedup_by(|curr_range, prev_range| { if prev_range.to() == curr_range.from() { let new_range = curr_range.merge(*prev_range); if prev_range == &primary || curr_range == &primary { primary = new_range; } *prev_range = new_range; true } else { false } }); self.primary_index = self .ranges .iter() .position(|&range| range == primary) .unwrap(); self } // TODO: consume an iterator or a vec to reduce allocations? #[must_use] pub fn new(ranges: SmallVec<[Range; 1]>, primary_index: usize) -> Self { assert!(!ranges.is_empty()); debug_assert!(primary_index < ranges.len()); let selection = Self { ranges, primary_index, }; selection.normalize() } /// Takes a closure and maps each `Range` over the closure. pub fn transform<F>(mut self, mut f: F) -> Self where F: FnMut(Range) -> Range, { for range in self.ranges.iter_mut() { *range = f(*range) } self.normalize() } /// Takes a closure and maps each `Range` over the closure to multiple `Range`s. pub fn transform_iter<F, I>(mut self, f: F) -> Self where F: FnMut(Range) -> I, I: Iterator<Item = Range>, { self.ranges = self.ranges.into_iter().flat_map(f).collect(); self.normalize() } // Ensures the selection adheres to the following invariants: // 1. All ranges are grapheme aligned. // 2. All ranges are at least 1 character wide, unless at the // very end of the document. // 3. Ranges are non-overlapping. // 4. Ranges are sorted by their position in the text. pub fn ensure_invariants(self, text: RopeSlice) -> Self { self.transform(|r| r.min_width_1(text).grapheme_aligned(text)) .normalize() } /// Transforms the selection into all of the left-side head positions, /// using block-cursor semantics. pub fn cursors(self, text: RopeSlice) -> Self { self.transform(|range| Range::point(range.cursor(text))) } pub fn fragments<'a>( &'a self, text: RopeSlice<'a>, ) -> impl DoubleEndedIterator<Item = Cow<'a, str>> + ExactSizeIterator<Item = Cow<str>> + 'a { self.ranges.iter().map(move |range| range.fragment(text)) } pub fn slices<'a>( &'a self, text: RopeSlice<'a>, ) -> impl DoubleEndedIterator<Item = RopeSlice<'a>> + ExactSizeIterator<Item = RopeSlice<'a>> + 'a { self.ranges.iter().map(move |range| range.slice(text)) } #[inline(always)] pub fn iter(&self) -> std::slice::Iter<'_, Range> { self.ranges.iter() } #[inline(always)] pub fn len(&self) -> usize { self.ranges.len() } // returns true if self ⊇ other pub fn contains(&self, other: &Selection) -> bool { let (mut iter_self, mut iter_other) = (self.iter(), other.iter()); let (mut ele_self, mut ele_other) = (iter_self.next(), iter_other.next()); loop { match (ele_self, ele_other) { (Some(ra), Some(rb)) => { if !ra.contains_range(rb) { // `self` doesn't contain next element from `other`, advance `self`, we need to match all from `other` ele_self = iter_self.next(); } else { // matched element from `other`, advance `other` ele_other = iter_other.next(); }; } (None, Some(_)) => { // exhausted `self`, we can't match the reminder of `other` return false; } (_, None) => { // no elements from `other` left to match, `self` contains `other` return true; } } } } } impl<'a> IntoIterator for &'a Selection { type Item = &'a Range; type IntoIter = std::slice::Iter<'a, Range>; fn into_iter(self) -> std::slice::Iter<'a, Range> { self.ranges().iter() } } impl IntoIterator for Selection { type Item = Range; type IntoIter = smallvec::IntoIter<[Range; 1]>; fn into_iter(self) -> smallvec::IntoIter<[Range; 1]> { self.ranges.into_iter() } } // TODO: checkSelection -> check if valid for doc length && sorted pub fn keep_or_remove_matches( text: RopeSlice, selection: &Selection, regex: &crate::regex::Regex, remove: bool, ) -> Option<Selection> { let result: SmallVec<_> = selection .iter() .filter(|range| regex.is_match(&range.fragment(text)) ^ remove) .copied() .collect(); // TODO: figure out a new primary index if !result.is_empty() { return Some(Selection::new(result, 0)); } None } pub fn select_on_matches( text: RopeSlice, selection: &Selection, regex: &crate::regex::Regex, ) -> Option<Selection> { let mut result = SmallVec::with_capacity(selection.len()); for sel in selection { // TODO: can't avoid occasional allocations since Regex can't operate on chunks yet let fragment = sel.fragment(text); let sel_start = sel.from(); let start_byte = text.char_to_byte(sel_start); for mat in regex.find_iter(&fragment) { // TODO: retain range direction let start = text.byte_to_char(start_byte + mat.start()); let end = text.byte_to_char(start_byte + mat.end()); let range = Range::new(start, end); // Make sure the match is not right outside of the selection. // These invalid matches can come from using RegEx anchors like `^`, `$` if range != Range::point(sel.to()) { result.push(range); } } } // TODO: figure out a new primary index if !result.is_empty() { return Some(Selection::new(result, 0)); } None } // TODO: support to split on capture #N instead of whole match pub fn split_on_matches( text: RopeSlice, selection: &Selection, regex: &crate::regex::Regex, ) -> Selection { let mut result = SmallVec::with_capacity(selection.len()); for sel in selection { // Special case: zero-width selection. if sel.from() == sel.to() { result.push(*sel); continue; } // TODO: can't avoid occasional allocations since Regex can't operate on chunks yet let fragment = sel.fragment(text); let sel_start = sel.from(); let sel_end = sel.to(); let start_byte = text.char_to_byte(sel_start); let mut start = sel_start; for mat in regex.find_iter(&fragment) { // TODO: retain range direction let end = text.byte_to_char(start_byte + mat.start()); result.push(Range::new(start, end)); start = text.byte_to_char(start_byte + mat.end()); } if start < sel_end { result.push(Range::new(start, sel_end)); } } // TODO: figure out a new primary index Selection::new(result, 0) } #[cfg(test)] mod test { use super::*; use crate::Rope; #[test] #[should_panic] fn test_new_empty() { let _ = Selection::new(smallvec![], 0); } #[test] fn test_create_normalizes_and_merges() { let sel = Selection::new( smallvec![ Range::new(10, 12), Range::new(6, 7), Range::new(4, 5), Range::new(3, 4), Range::new(0, 6), Range::new(7, 8), Range::new(9, 13), Range::new(13, 14), ], 0, ); let res = sel .ranges .into_iter() .map(|range| format!("{}/{}", range.anchor, range.head)) .collect::<Vec<String>>() .join(","); assert_eq!(res, "0/6,6/7,7/8,9/13,13/14"); // it correctly calculates a new primary index let sel = Selection::new( smallvec![Range::new(0, 2), Range::new(1, 5), Range::new(4, 7)], 2, ); let res = sel .ranges .into_iter() .map(|range| format!("{}/{}", range.anchor, range.head)) .collect::<Vec<String>>() .join(","); assert_eq!(res, "0/7"); assert_eq!(sel.primary_index, 0); } #[test] fn test_create_merges_adjacent_points() { let sel = Selection::new( smallvec![ Range::new(10, 12), Range::new(12, 12), Range::new(12, 12), Range::new(10, 10), Range::new(8, 10), ], 0, ); let res = sel .ranges .into_iter() .map(|range| format!("{}/{}", range.anchor, range.head)) .collect::<Vec<String>>() .join(","); assert_eq!(res, "8/10,10/12,12/12"); } #[test] fn test_contains() { let range = Range::new(10, 12); assert!(!range.contains(9)); assert!(range.contains(10)); assert!(range.contains(11)); assert!(!range.contains(12)); assert!(!range.contains(13)); let range = Range::new(9, 6); assert!(!range.contains(9)); assert!(range.contains(7)); assert!(range.contains(6)); } #[test] fn test_overlaps() { fn overlaps(a: (usize, usize), b: (usize, usize)) -> bool { Range::new(a.0, a.1).overlaps(&Range::new(b.0, b.1)) } // Two non-zero-width ranges, no overlap. assert!(!overlaps((0, 3), (3, 6))); assert!(!overlaps((0, 3), (6, 3))); assert!(!overlaps((3, 0), (3, 6))); assert!(!overlaps((3, 0), (6, 3))); assert!(!overlaps((3, 6), (0, 3))); assert!(!overlaps((3, 6), (3, 0))); assert!(!overlaps((6, 3), (0, 3))); assert!(!overlaps((6, 3), (3, 0))); // Two non-zero-width ranges, overlap. assert!(overlaps((0, 4), (3, 6))); assert!(overlaps((0, 4), (6, 3))); assert!(overlaps((4, 0), (3, 6))); assert!(overlaps((4, 0), (6, 3))); assert!(overlaps((3, 6), (0, 4))); assert!(overlaps((3, 6), (4, 0))); assert!(overlaps((6, 3), (0, 4))); assert!(overlaps((6, 3), (4, 0))); // Zero-width and non-zero-width range, no overlap. assert!(!overlaps((0, 3), (3, 3))); assert!(!overlaps((3, 0), (3, 3))); assert!(!overlaps((3, 3), (0, 3))); assert!(!overlaps((3, 3), (3, 0))); // Zero-width and non-zero-width range, overlap. assert!(overlaps((1, 4), (1, 1))); assert!(overlaps((4, 1), (1, 1))); assert!(overlaps((1, 1), (1, 4))); assert!(overlaps((1, 1), (4, 1))); assert!(overlaps((1, 4), (3, 3))); assert!(overlaps((4, 1), (3, 3))); assert!(overlaps((3, 3), (1, 4))); assert!(overlaps((3, 3), (4, 1))); // Two zero-width ranges, no overlap. assert!(!overlaps((0, 0), (1, 1))); assert!(!overlaps((1, 1), (0, 0))); // Two zero-width ranges, overlap. assert!(overlaps((1, 1), (1, 1))); } #[test] fn test_grapheme_aligned() { let r = Rope::from_str("\r\nHi\r\n"); let s = r.slice(..); // Zero-width. assert_eq!(Range::new(0, 0).grapheme_aligned(s), Range::new(0, 0)); assert_eq!(Range::new(1, 1).grapheme_aligned(s), Range::new(0, 0)); assert_eq!(Range::new(2, 2).grapheme_aligned(s), Range::new(2, 2)); assert_eq!(Range::new(3, 3).grapheme_aligned(s), Range::new(3, 3)); assert_eq!(Range::new(4, 4).grapheme_aligned(s), Range::new(4, 4)); assert_eq!(Range::new(5, 5).grapheme_aligned(s), Range::new(4, 4)); assert_eq!(Range::new(6, 6).grapheme_aligned(s), Range::new(6, 6)); // Forward. assert_eq!(Range::new(0, 1).grapheme_aligned(s), Range::new(0, 2)); assert_eq!(Range::new(1, 2).grapheme_aligned(s), Range::new(0, 2)); assert_eq!(Range::new(2, 3).grapheme_aligned(s), Range::new(2, 3)); assert_eq!(Range::new(3, 4).grapheme_aligned(s), Range::new(3, 4)); assert_eq!(Range::new(4, 5).grapheme_aligned(s), Range::new(4, 6)); assert_eq!(Range::new(5, 6).grapheme_aligned(s), Range::new(4, 6)); assert_eq!(Range::new(0, 2).grapheme_aligned(s), Range::new(0, 2)); assert_eq!(Range::new(1, 3).grapheme_aligned(s), Range::new(0, 3)); assert_eq!(Range::new(2, 4).grapheme_aligned(s), Range::new(2, 4)); assert_eq!(Range::new(3, 5).grapheme_aligned(s), Range::new(3, 6)); assert_eq!(Range::new(4, 6).grapheme_aligned(s), Range::new(4, 6)); // Reverse. assert_eq!(Range::new(1, 0).grapheme_aligned(s), Range::new(2, 0)); assert_eq!(Range::new(2, 1).grapheme_aligned(s), Range::new(2, 0)); assert_eq!(Range::new(3, 2).grapheme_aligned(s), Range::new(3, 2)); assert_eq!(Range::new(4, 3).grapheme_aligned(s), Range::new(4, 3)); assert_eq!(Range::new(5, 4).grapheme_aligned(s), Range::new(6, 4)); assert_eq!(Range::new(6, 5).grapheme_aligned(s), Range::new(6, 4)); assert_eq!(Range::new(2, 0).grapheme_aligned(s), Range::new(2, 0)); assert_eq!(Range::new(3, 1).grapheme_aligned(s), Range::new(3, 0)); assert_eq!(Range::new(4, 2).grapheme_aligned(s), Range::new(4, 2)); assert_eq!(Range::new(5, 3).grapheme_aligned(s), Range::new(6, 3)); assert_eq!(Range::new(6, 4).grapheme_aligned(s), Range::new(6, 4)); } #[test] fn test_min_width_1() { let r = Rope::from_str("\r\nHi\r\n"); let s = r.slice(..); // Zero-width. assert_eq!(Range::new(0, 0).min_width_1(s), Range::new(0, 2)); assert_eq!(Range::new(1, 1).min_width_1(s), Range::new(1, 2)); assert_eq!(Range::new(2, 2).min_width_1(s), Range::new(2, 3)); assert_eq!(Range::new(3, 3).min_width_1(s), Range::new(3, 4)); assert_eq!(Range::new(4, 4).min_width_1(s), Range::new(4, 6)); assert_eq!(Range::new(5, 5).min_width_1(s), Range::new(5, 6)); assert_eq!(Range::new(6, 6).min_width_1(s), Range::new(6, 6)); // Forward. assert_eq!(Range::new(0, 1).min_width_1(s), Range::new(0, 1)); assert_eq!(Range::new(1, 2).min_width_1(s), Range::new(1, 2)); assert_eq!(Range::new(2, 3).min_width_1(s), Range::new(2, 3)); assert_eq!(Range::new(3, 4).min_width_1(s), Range::new(3, 4)); assert_eq!(Range::new(4, 5).min_width_1(s), Range::new(4, 5)); assert_eq!(Range::new(5, 6).min_width_1(s), Range::new(5, 6)); // Reverse. assert_eq!(Range::new(1, 0).min_width_1(s), Range::new(1, 0)); assert_eq!(Range::new(2, 1).min_width_1(s), Range::new(2, 1)); assert_eq!(Range::new(3, 2).min_width_1(s), Range::new(3, 2)); assert_eq!(Range::new(4, 3).min_width_1(s), Range::new(4, 3)); assert_eq!(Range::new(5, 4).min_width_1(s), Range::new(5, 4)); assert_eq!(Range::new(6, 5).min_width_1(s), Range::new(6, 5)); } #[test] fn test_select_on_matches() { use crate::regex::{Regex, RegexBuilder}; let r = Rope::from_str("Nobody expects the Spanish inquisition"); let s = r.slice(..); let selection = Selection::single(0, r.len_chars()); assert_eq!( select_on_matches(s, &selection, &Regex::new(r"[A-Z][a-z]*").unwrap()), Some(Selection::new( smallvec![Range::new(0, 6), Range::new(19, 26)], 0 )) ); let r = Rope::from_str("This\nString\n\ncontains multiple\nlines"); let s = r.slice(..); let start_of_line = RegexBuilder::new(r"^").multi_line(true).build().unwrap(); let end_of_line = RegexBuilder::new(r"$").multi_line(true).build().unwrap(); // line without ending assert_eq!( select_on_matches(s, &Selection::single(0, 4), &start_of_line), Some(Selection::single(0, 0)) ); assert_eq!( select_on_matches(s, &Selection::single(0, 4), &end_of_line), None ); // line with ending assert_eq!( select_on_matches(s, &Selection::single(0, 5), &start_of_line), Some(Selection::single(0, 0)) ); assert_eq!( select_on_matches(s, &Selection::single(0, 5), &end_of_line), Some(Selection::single(4, 4)) ); // line with start of next line assert_eq!( select_on_matches(s, &Selection::single(0, 6), &start_of_line), Some(Selection::new( smallvec![Range::point(0), Range::point(5)], 0 )) ); assert_eq!( select_on_matches(s, &Selection::single(0, 6), &end_of_line), Some(Selection::single(4, 4)) ); // multiple lines assert_eq!( select_on_matches( s, &Selection::single(0, s.len_chars()), &RegexBuilder::new(r"^[a-z ]*$") .multi_line(true) .build() .unwrap() ), Some(Selection::new( smallvec![Range::point(12), Range::new(13, 30), Range::new(31, 36)], 0 )) ); } #[test] fn test_line_range() { let r = Rope::from_str("\r\nHi\r\nthere!"); let s = r.slice(..); // Zero-width ranges. assert_eq!(Range::new(0, 0).line_range(s), (0, 0)); assert_eq!(Range::new(1, 1).line_range(s), (0, 0)); assert_eq!(Range::new(2, 2).line_range(s), (1, 1)); assert_eq!(Range::new(3, 3).line_range(s), (1, 1)); // Forward ranges. assert_eq!(Range::new(0, 1).line_range(s), (0, 0)); assert_eq!(Range::new(0, 2).line_range(s), (0, 0)); assert_eq!(Range::new(0, 3).line_range(s), (0, 1)); assert_eq!(Range::new(1, 2).line_range(s), (0, 0)); assert_eq!(Range::new(2, 3).line_range(s), (1, 1)); assert_eq!(Range::new(3, 8).line_range(s), (1, 2)); assert_eq!(Range::new(0, 12).line_range(s), (0, 2)); // Reverse ranges. assert_eq!(Range::new(1, 0).line_range(s), (0, 0)); assert_eq!(Range::new(2, 0).line_range(s), (0, 0)); assert_eq!(Range::new(3, 0).line_range(s), (0, 1)); assert_eq!(Range::new(2, 1).line_range(s), (0, 0)); assert_eq!(Range::new(3, 2).line_range(s), (1, 1)); assert_eq!(Range::new(8, 3).line_range(s), (1, 2)); assert_eq!(Range::new(12, 0).line_range(s), (0, 2)); } #[test] fn test_cursor() { let r = Rope::from_str("\r\nHi\r\nthere!"); let s = r.slice(..); // Zero-width ranges. assert_eq!(Range::new(0, 0).cursor(s), 0); assert_eq!(Range::new(2, 2).cursor(s), 2); assert_eq!(Range::new(3, 3).cursor(s), 3); // Forward ranges. assert_eq!(Range::new(0, 2).cursor(s), 0); assert_eq!(Range::new(0, 3).cursor(s), 2); assert_eq!(Range::new(3, 6).cursor(s), 4); // Reverse ranges. assert_eq!(Range::new(2, 0).cursor(s), 0); assert_eq!(Range::new(6, 2).cursor(s), 2); assert_eq!(Range::new(6, 3).cursor(s), 3); } #[test] fn test_put_cursor() { let r = Rope::from_str("\r\nHi\r\nthere!"); let s = r.slice(..); // Zero-width ranges. assert_eq!(Range::new(0, 0).put_cursor(s, 0, true), Range::new(0, 2)); assert_eq!(Range::new(0, 0).put_cursor(s, 2, true), Range::new(0, 3)); assert_eq!(Range::new(2, 3).put_cursor(s, 4, true), Range::new(2, 6)); assert_eq!(Range::new(2, 8).put_cursor(s, 4, true), Range::new(2, 6)); assert_eq!(Range::new(8, 8).put_cursor(s, 4, true), Range::new(9, 4)); // Forward ranges. assert_eq!(Range::new(3, 6).put_cursor(s, 0, true), Range::new(4, 0)); assert_eq!(Range::new(3, 6).put_cursor(s, 2, true), Range::new(4, 2)); assert_eq!(Range::new(3, 6).put_cursor(s, 3, true), Range::new(3, 4)); assert_eq!(Range::new(3, 6).put_cursor(s, 4, true), Range::new(3, 6)); assert_eq!(Range::new(3, 6).put_cursor(s, 6, true), Range::new(3, 7)); assert_eq!(Range::new(3, 6).put_cursor(s, 8, true), Range::new(3, 9)); // Reverse ranges. assert_eq!(Range::new(6, 3).put_cursor(s, 0, true), Range::new(6, 0)); assert_eq!(Range::new(6, 3).put_cursor(s, 2, true), Range::new(6, 2)); assert_eq!(Range::new(6, 3).put_cursor(s, 3, true), Range::new(6, 3)); assert_eq!(Range::new(6, 3).put_cursor(s, 4, true), Range::new(6, 4)); assert_eq!(Range::new(6, 3).put_cursor(s, 6, true), Range::new(4, 7)); assert_eq!(Range::new(6, 3).put_cursor(s, 8, true), Range::new(4, 9)); } #[test] fn test_split_on_matches() { use crate::regex::Regex; let text = Rope::from(" abcd efg wrs xyz 123 456"); let selection = Selection::new(smallvec![Range::new(0, 9), Range::new(11, 20),], 0); let result = split_on_matches(text.slice(..), &selection, &Regex::new(r"\s+").unwrap()); assert_eq!( result.ranges(), &[ // TODO: rather than this behavior, maybe we want it // to be based on which side is the anchor? // // We get a leading zero-width range when there's // a leading match because ranges are inclusive on // the left. Imagine, for example, if the entire // selection range were matched: you'd still want // at least one range to remain after the split. Range::new(0, 0), Range::new(1, 5), Range::new(6, 9), Range::new(11, 13), Range::new(16, 19), // In contrast to the comment above, there is no // _trailing_ zero-width range despite the trailing // match, because ranges are exclusive on the right. ] ); assert_eq!( result.fragments(text.slice(..)).collect::<Vec<_>>(), &["", "abcd", "efg", "rs", "xyz"] ); } #[test] fn test_merge_consecutive_ranges() { let selection = Selection::new( smallvec![ Range::new(0, 1), Range::new(1, 10), Range::new(15, 20), Range::new(25, 26), Range::new(26, 30) ], 4, ); let result = selection.merge_consecutive_ranges(); assert_eq!( result.ranges(), &[Range::new(0, 10), Range::new(15, 20), Range::new(25, 30)] ); assert_eq!(result.primary_index, 2); let selection = Selection::new(smallvec![Range::new(0, 1)], 0); let result = selection.merge_consecutive_ranges(); assert_eq!(result.ranges(), &[Range::new(0, 1)]); assert_eq!(result.primary_index, 0); let selection = Selection::new( smallvec![ Range::new(0, 1), Range::new(1, 5), Range::new(5, 8), Range::new(8, 10), Range::new(10, 15), Range::new(18, 25) ], 3, ); let result = selection.merge_consecutive_ranges(); assert_eq!(result.ranges(), &[Range::new(0, 15), Range::new(18, 25)]); assert_eq!(result.primary_index, 0); } #[test] fn test_selection_contains() { fn contains(a: Vec<(usize, usize)>, b: Vec<(usize, usize)>) -> bool { let sela = Selection::new(a.iter().map(|a| Range::new(a.0, a.1)).collect(), 0); let selb = Selection::new(b.iter().map(|b| Range::new(b.0, b.1)).collect(), 0); sela.contains(&selb) } // exact match assert!(contains(vec!((1, 1)), vec!((1, 1)))); // larger set contains smaller assert!(contains(vec!((1, 1), (2, 2), (3, 3)), vec!((2, 2)))); // multiple matches assert!(contains(vec!((1, 1), (2, 2)), vec!((1, 1), (2, 2)))); // smaller set can't contain bigger assert!(!contains(vec!((1, 1)), vec!((1, 1), (2, 2)))); assert!(contains( vec!((1, 1), (2, 4), (5, 6), (7, 9), (10, 13)), vec!((3, 4), (7, 9)) )); assert!(!contains(vec!((1, 1), (5, 6)), vec!((1, 6)))); // multiple ranges of other are all contained in some ranges of self, assert!(contains( vec!((1, 4), (7, 10)), vec!((1, 2), (3, 4), (7, 9)) )); } }