// Each component declares it's own size constraints and gets fitted based on it's parent. // Q: how does this work with popups? // cursive does compositor.screen_mut().add_layer_at(pos::absolute(x, y), <component>) use helix_core::Position; use helix_view::graphics::{CursorKind, Rect}; use crossterm::event::Event; use tui::buffer::Buffer as Surface; pub type Callback = Box<dyn FnOnce(&mut Compositor)>; // --> EventResult should have a callback that takes a context with methods like .popup(), // .prompt() etc. That way we can abstract it from the renderer. // Q: How does this interact with popups where we need to be able to specify the rendering of the // popup? // A: It could just take a textarea. // // If Compositor was specified in the callback that's then problematic because of // Cursive-inspired pub enum EventResult { Ignored, Consumed(Option<Callback>), } use helix_view::Editor; use crate::job::Jobs; pub struct Context<'a> { pub editor: &'a mut Editor, pub scroll: Option<usize>, pub jobs: &'a mut Jobs, } pub trait Component: Any + AnyComponent { /// Process input events, return true if handled. fn handle_event(&mut self, _event: Event, _ctx: &mut Context) -> EventResult { EventResult::Ignored } // , args: () /// Should redraw? Useful for saving redraw cycles if we know component didn't change. fn should_update(&self) -> bool { true } /// Render the component onto the provided surface. fn render(&mut self, area: Rect, frame: &mut Surface, ctx: &mut Context); /// Get cursor position and cursor kind. fn cursor(&self, _area: Rect, _ctx: &Editor) -> (Option<Position>, CursorKind) { (None, CursorKind::Hidden) } /// May be used by the parent component to compute the child area. /// viewport is the maximum allowed area, and the child should stay within those bounds. fn required_size(&mut self, _viewport: (u16, u16)) -> Option<(u16, u16)> { // TODO: for scrolling, the scroll wrapper should place a size + offset on the Context // that way render can use it None } fn type_name(&self) -> &'static str { std::any::type_name::<Self>() } } use anyhow::Error; use std::io::stdout; use tui::backend::{Backend, CrosstermBackend}; type Terminal = tui::terminal::Terminal<CrosstermBackend<std::io::Stdout>>; pub struct Compositor { layers: Vec<Box<dyn Component>>, terminal: Terminal, pub(crate) last_picker: Option<Box<dyn Component>>, } impl Compositor { pub fn new() -> Result<Self, Error> { let backend = CrosstermBackend::new(stdout()); let terminal = Terminal::new(backend)?; Ok(Self { layers: Vec::new(), terminal, last_picker: None, }) } pub fn size(&self) -> Rect { self.terminal.size().expect("couldn't get terminal size") } pub fn resize(&mut self, width: u16, height: u16) { self.terminal .resize(Rect::new(0, 0, width, height)) .expect("Unable to resize terminal") } pub fn save_cursor(&mut self) { if self.terminal.cursor_kind() == CursorKind::Hidden { self.terminal .backend_mut() .show_cursor(CursorKind::Block) .ok(); } } pub fn load_cursor(&mut self) { if self.terminal.cursor_kind() == CursorKind::Hidden { self.terminal.backend_mut().hide_cursor().ok(); } } pub fn push(&mut self, mut layer: Box<dyn Component>) { let size = self.size(); // trigger required_size on init layer.required_size((size.width, size.height)); self.layers.push(layer); } pub fn pop(&mut self) -> Option<Box<dyn Component>> { self.layers.pop() } pub fn handle_event(&mut self, event: Event, cx: &mut Context) -> bool { // propagate events through the layers until we either find a layer that consumes it or we // run out of layers (event bubbling) for layer in self.layers.iter_mut().rev() { match layer.handle_event(event, cx) { EventResult::Consumed(Some(callback)) => { callback(self); return true; } EventResult::Consumed(None) => return true, EventResult::Ignored => false, }; } false } pub fn render(&mut self, cx: &mut Context) { self.terminal .autoresize() .expect("Unable to determine terminal size"); // TODO: need to recalculate view tree if necessary let surface = self.terminal.current_buffer_mut(); let area = *surface.area(); for layer in &mut self.layers { layer.render(area, surface, cx); } let (pos, kind) = self.cursor(area, cx.editor); let pos = pos.map(|pos| (pos.col as u16, pos.row as u16)); self.terminal.draw(pos, kind).unwrap(); } pub fn cursor(&self, area: Rect, editor: &Editor) -> (Option<Position>, CursorKind) { for layer in self.layers.iter().rev() { if let (Some(pos), kind) = layer.cursor(area, editor) { return (Some(pos), kind); } } (None, CursorKind::Hidden) } pub fn has_component(&self, type_name: &str) -> bool { self.layers .iter() .any(|component| component.type_name() == type_name) } pub fn find(&mut self, type_name: &str) -> Option<&mut dyn Component> { self.layers .iter_mut() .find(|component| component.type_name() == type_name) .map(|component| component.as_mut()) } } // View casting, taken straight from Cursive use std::any::Any; /// A view that can be downcasted to its concrete type. /// /// This trait is automatically implemented for any `T: Component`. pub trait AnyComponent { /// Downcast self to a `Any`. fn as_any(&self) -> &dyn Any; /// Downcast self to a mutable `Any`. fn as_any_mut(&mut self) -> &mut dyn Any; /// Returns a boxed any from a boxed self. /// /// Can be used before `Box::downcast()`. /// /// # Examples /// /// ```rust /// use helix_term::{ui::Text, compositor::Component}; /// let boxed: Box<dyn Component> = Box::new(Text::new("text".to_string())); /// let text: Box<Text> = boxed.as_boxed_any().downcast().unwrap(); /// ``` fn as_boxed_any(self: Box<Self>) -> Box<dyn Any>; } impl<T: Component> AnyComponent for T { /// Downcast self to a `Any`. fn as_any(&self) -> &dyn Any { self } /// Downcast self to a mutable `Any`. fn as_any_mut(&mut self) -> &mut dyn Any { self } fn as_boxed_any(self: Box<Self>) -> Box<dyn Any> { self } } impl dyn AnyComponent { /// Attempts to downcast `self` to a concrete type. pub fn downcast_ref<T: Any>(&self) -> Option<&T> { self.as_any().downcast_ref() } /// Attempts to downcast `self` to a concrete type. pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> { self.as_any_mut().downcast_mut() } /// Attempts to downcast `Box<Self>` to a concrete type. pub fn downcast<T: Any>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { // Do the check here + unwrap, so the error // value is `Self` and not `dyn Any`. if self.as_any().is::<T>() { Ok(self.as_boxed_any().downcast().unwrap()) } else { Err(self) } } /// Checks if this view is of type `T`. pub fn is<T: Any>(&mut self) -> bool { self.as_any().is::<T>() } }