#lang racket (require "../lib.rkt") (require (only-in "../simple/rec.rkt" replace)) (require (only-in "../simple/ext.rkt" type->whnf)) (provide (all-defined-out)) ;; The Simply-Typed Lambda Calculus with higher-order *impredicative* references, ;; plus sums products booleans ascryption etc, to implement doubly-linked lists ;; Checks an expression for syntactic well-formedness. (define (stlc-dll/expr? expr) (match expr [x #:when (symbol? x) #t] [n #:when (natural? n) #t] [b #:when (boolean? b) #t] [`(,e : ,t) (and (stlc-dll/expr? e) (stlc-dll/type? t))] [`(type ,t1 ,t2 ,e) (and (stlc-dll/type? t1) (stlc-dll/type? t2) (stlc-dll/expr? e))] [(or `(inc ,e) `(car ,e) `(cdr ,e) `(inl ,e) `(inr ,e) `(new ,e) `(! ,e) `(fold ,e) `(unfold ,e)) (stlc-dll/expr? e)] [(or `(pair ,e1 ,e2) `(set ,e1 ,e2) `(,e1 ,e2)) (and (stlc-dll/expr? e1) (stlc-dll/expr? e2))] [`(if ,c ,e1 ,e2) (and (stlc-dll/expr? c) (stlc-dll/expr? e1) (stlc-dll/expr? e2))] [`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (and (symbol? x1) (symbol? x2) (stlc-dll/expr? c) (stlc-dll/expr? e1) (stlc-dll/expr? e2))] [`(λ (,x : ,t) ,e) (and (symbol? x) (stlc-dll/type? t) (stlc-dll/expr? e))] [_ #f])) ;; Checks a type for syntactic well-formedness. (define (stlc-dll/type? type) (match type ; Symbols are only valid if previously bound (by `type` or `μ`). ; We can't check that here, however. [x #:when (symbol? x) #t] [`(Ref ,t) (stlc-dll/type? t)] [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (stlc-dll/type? t1) (stlc-dll/type? t2))] [`(,t1 → ,k ,t2) (and (stlc-dll/type? t1) (natural? k) (stlc-dll/type? t2))] [`(μ ,x ,t) (and (symbol? x) (stlc-dll/type? t))] [_ #f])) ;; Checks a value for syntactic well-formedness. (define (stlc-dll/value? expr) (match expr [x #:when (symbol? x) #t] [n #:when (natural? n) #t] [b #:when (boolean? b) #t] [(or `(inl ,v) `(inr ,v)) (stlc-dll/value? v)] [(or `(pair ,v1 ,v2) `(,v1 ,v2)) (and (stlc-dll/value? v1) (stlc-dll/value? v2))] [`(λ (,x : ,t) ,e ,env) (and (symbol? x) (stlc-dll/type? t) (stlc-dll/expr? e) (dict? env))] [_ #f])) (define (interpret expr) (interpret/core (desugar expr) #hash() (make-hash))) ;; Γ: a Table[Symbol, Expr] representing the context: ;; the current bindings in scope introduced by λx.[] ;; Σ: a Table[Symbol, Expr] representing the heap: ;; the current references on the heap generated by (gensym). mutable ;; Interprets a *desugared* expression *stripped* of type annotations. (define/contract (interpret/core expr Γ Σ) (-> stlc-dll/expr? dict? dict? stlc-dll/value?) (match expr ['sole 'sole] [n #:when (natural? n) n] [b #:when (boolean? b) b] [r #:when (dict-has-key? Σ r) r] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [f #:when (symbol? f) f] [`(inc ,e) (match (interpret/core e Γ Σ) [n #:when (natural? n) (+ n 1)] [e (format "incrementing an unknown value ~a" e)])] [`(if ,c ,e1 ,e2) (match (interpret/core c Γ Σ) ['#t (interpret/core e1 Γ Σ)] ['#f (interpret/core e2 Γ Σ)] [e (err (format "calling if on unknown expression ~a" e))])] [`(pair ,e1 ,e2) `(pair ,(interpret/core e1 Γ Σ) ,(interpret/core e2 Γ Σ))] [`(car ,e) (match (interpret/core e Γ Σ) [`(pair ,e1 ,e2) e1] [e (err (format "calling car on unknown expression ~a" e))])] [`(cdr ,e) (match (interpret/core e Γ Σ) [`(pair ,e1 ,e2) e2] [e (err (format "calling cdr on unknown expression ~a" e))])] [`(inl ,e) `(inl ,(interpret/core e Γ Σ))] [`(inr ,e) `(inr ,(interpret/core e Γ Σ))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (interpret/core e Γ Σ) [`(inl ,e) (interpret/core e1 (dict-set Γ x1 e) Σ)] [`(inr ,e) (interpret/core e2 (dict-set Γ x2 e) Σ)] [e (err (format "calling case on unknown expression ~a" e))])] [`(new ,e) (let ([r (gensym)]) (dict-set! Σ r e) r)] [`(! ,e) (let ([r (interpret/core e Γ Σ)]) (if (dict-has-key? Σ r) (interpret/core (dict-ref Σ r) Γ Σ) (err (format "attempting to deref unknown reference ~a" r))))] [`(set ,e1 ,e2) (let ([r (interpret/core e1 Γ Σ)]) (if (dict-has-key? Σ r) (dict-set! Σ r (interpret/core e2 Γ Σ)) (err (format "attempting to update unknown reference ~a" r)))) 'sole] [`(fold ,e) `(fold ,(interpret/core e Γ Σ))] [`(unfold ,e) (match (interpret/core e Γ Σ) [`(fold ,e) e] [e (err (format "attempting to unfold unknown expression ~a" e))])] [`(λ (,x : ,t) ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret/core e1 Γ Σ) [`(λ ,x ,e1 ,env) (interpret/core e1 (dict-set env x (interpret/core e2 Γ Σ)) Σ)] [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])])) ;; Checks that an expression is of a type, and returns #t or #f (or a bubbled-up error) ;; with: a type in weak-head normal form (!!) ;; Γ: a Table[Symbol, Expr ⊕ Type] representing the context: ;; the current bindings in scope introduced by λx.[] and μx.[] and τx.[] (define (check expr with) (check/core (desugar expr) with #hash())) (define/contract (check/core expr with Γ) (-> stlc-dll/expr? stlc-dll/type? dict? boolean?) (match expr [`(type ,t1 ,t2 ,in) (check/core in with (dict-set Γ `(type ,t1) t2))] [`(if ,c ,e1 ,e2) (and (check/core c 'Bool Γ) (check/core e1 with Γ) (check/core e2 with Γ))] [`(pair ,e1 ,e2) (match with [`(,t1 × ,t2) (and (check/core e1 t1 Γ) (check/core e2 t2 Γ))] [_ #f])] [`(inl ,e) (match with [`(,t1 ⊕ ,t2) (check/core e t1 Γ)] [_ #f])] [`(inr ,e) (match with [`(,t1 ⊕ ,t2) (check/core e t2 Γ)] [_ #f])] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer/core e Γ) ; avoid needing type annotation on e [`(,a1 ⊕ ,a2) (and (check/core e1 with (dict-set Γ x1 a1)) (check/core e2 with (dict-set Γ x2 a2)))] [_ #f])] [`(new ,e) (match with [`(Ref ,t) (check/core e t Γ)] [_ #f])] [`(! ,e) (check/core e `(Ref ,with) Γ)] [`(fold ,e) (match with [`(μ ,x ,t) (check/core e t (dict-set Γ `(type ,x) `(μ ,x ,t)))] [_ #f])] [`(λ (,x : ,t) ,e) (match with [`(,t1 → ,k ,t2) (and (equiv-type t t1 Γ) (check/core e t2 (dict-set Γ x t)) (> k (level-body e (dict-set Γ x t1))))] ; KNOB [`(,t1 → ,t2) (err (format "missing level annotation on function type"))] [_ #f])] [_ (equiv-type (infer/core expr Γ) with Γ)])) ;; Checks if two types are equivalent up to α-conversion in context (define (equiv-type e1 e2 Γ) (equiv-type/core e1 e2 Γ Γ)) (define/contract (equiv-type/core e1 e2 Γ1 Γ2) (-> stlc-dll/type? stlc-dll/type? dict? dict? boolean?) (match* (e1 e2) ; bound identifiers: if a key exists in the context, look it up [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv-type/core (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv-type/core x1 (dict-ref Γ2 x2) Γ1 Γ2)] ; recursive types: self-referential names can be arbitrary [(`(μ ,x1 ,t1) `(μ ,x2 ,t2)) (let ([name gensym]) (equiv-type/core t1 t2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] ; check for syntactic equivalence on remaining forms [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv-type/core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)])) ;; Infers a type from a given expression, if possible, or errors out. ;; Returns a type in weak-head normal form for structural matching. (define (infer expr) (infer/core (desugar expr) #hash())) (define/contract (infer/core expr Γ) (-> stlc-dll/expr? dict? stlc-dll/type?) (match expr ['sole 'Unit] [n #:when (natural? n) 'Nat] [b #:when (boolean? b) 'Bool] [x #:when (dict-has-key? Γ x) (type->whnf (dict-ref Γ x) Γ)] [f #:when (symbol? f) (err (format "attempting to infer type of free variable ~a" f))] [`(type ,t1 ,t2 ,in) (infer/core in (dict-set Γ `(type ,t1) t2))] [`(,e : ,t) ; we have a manual type annotation, so we must expand to weak-head normal form (if (check/core e (type->whnf t Γ) Γ) (type->whnf t Γ) (err (format "annotated expression ~a is not of annotated type ~a" e t)))] [`(inc ,e) (if (check/core e 'Nat Γ) 'Nat (err (format "calling inc on incorrect type ~a" (infer/core e Γ))))] [`(if ,c ,e1 ,e2) (if (check/core c 'Bool Γ) (let ([t (infer/core e1 Γ)]) (if (check/core e2 t Γ) t (err (format "condition has branches of differing types ~a and ~a" t (infer/core e2 Γ))))) (err (format "condition ~a has incorrect type ~a" c (infer/core c Γ))))] [`(pair ,e1 ,e2) `(,(infer/core e1 Γ) × ,(infer/core e2 Γ))] [`(car ,e) (match (infer/core e Γ) [`(,t1 × ,t2) t1] [t (err (format "calling car on incorrect type ~a" t))])] [`(cdr ,e) (match (infer/core e Γ) [`(,t1 × ,t2) t2] [t (err (format "calling cdr on incorrect type ~a" t))])] [`(inl ,e) (err (format "unable to infer the type of a raw inl"))] [`(inr ,e) (err (format "unable to infer the type of a raw inr"))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer/core e Γ) [`(,a1 ⊕ ,a2) (let ([b1 (infer/core e1 (dict-set Γ x1 a1))] [b2 (infer/core e2 (dict-set Γ x2 a2))]) (if (equiv-type b1 b2 Γ) b1 (err (format "case ~a is not of consistent type!" `(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))] [t (err (format "calling case on incorrect type ~a" t))])] [`(new ,e) `(Ref ,(infer/core e Γ))] [`(! ,e) (match (infer/core e Γ) [`(Ref ,t) t] [t (err (format "attempting to deref term ~a of type ~a" e t))])] [`(set ,e1 ,e2) (match (infer/core e1 Γ) [`(Ref ,t) (if (check/core e2 t Γ) 'Unit (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type" e1 t e2 (infer/core e2 Γ))))] [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])] [`(unfold ,e) (match (infer/core e Γ) [`(μ ,x ,t) (replace t x `(μ ,x ,t))] [t (err (format "expected ~a to be recursive, got ~a" e t))])] [`(λ (,x : ,t1) ,e) (let* ([t2 (infer/core e (dict-set Γ x t1))] [t1 (type->whnf t1 Γ)] ; type annotation, must expand [k (+ 1 (level-body e (dict-set Γ x t1)))]) ; KNOB `(,t1 → ,k ,t2))] [`(,e1 ,e2) (match (infer/core e1 Γ) [`(,t1 → ,k ,t2) (if (check/core e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer/core e2 Γ))))] [`(,t1 → ,t2) (err (format "missing level annotation on function type"))] [t (err (format "expected → type on application body, got ~a" t))])])) ;; Checks if a type is well-formed in the current context. ;; BIG ASSUMPTION: types in the current context are well-formed (define/contract (well-formed t Γ) (-> stlc-dll/type? dict? boolean?) (match t [x #:when (dict-has-key? Γ x) #t] [(or 'Unit 'Nat 'Bool) #t] [`(Ref ,t) (well-formed t Γ)] [`(μ ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))] [`(type ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))] [(or `(,t1 → ,_ ,t2) `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-formed t1 Γ) (well-formed t2 Γ))] [_ #f])) ;; Checks if a type is well-kinded with respect to a level in the current context ;; BIG ASSUMPTION: types in the current context are well-formed (define/contract (well-kinded t l Γ) (-> stlc-dll/type? natural? dict? boolean?) (match t [x #:when (dict-has-key? Γ x) #t] [(or 'Unit 'Nat 'Bool) (>= l 0)] [`(Ref ,t) (if (zero? l) (well-kinded t l Γ) (well-kinded t (- l 1) Γ))] [`(μ ,x ,t) (well-kinded t l (dict-set Γ x `(μ ,x ,t)))] [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-kinded t1 l Γ) (well-kinded t2 l Γ))] [`(,t1 → ,k ,t2) (and (>= l k) (well-kinded t1 k Γ) (well-kinded t2 k Γ))] [_ #f])) ;; Infers the level of a (well-formed) type. (define/contract (level-type t Γ) (-> stlc-dll/type? dict? natural?) (match t [x #:when (dict-has-key? Γ x) (level-type (dict-ref Γ x) Γ)] [(or 'Unit 'Nat) 0] [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (max (level-type t1 Γ) (level-type t2 Γ))] [`(μ ,x ,t) ; note: correct but VERY WEIRD (level-type t Γ)] [`(,t1 → ,k ,t2) (if (and (>= k (level-type t1 Γ)) (>= k (level-type t2 Γ))) k ; KNOB (err (format "annotated level ~a is less than inferred levels of ~a and ~a!" k t1 t2)))] [`(Ref ,t) (let ([k (level-type t Γ)]) (if (zero? k) 0 (+ 1 k)))] ; KNOB [t #:when (symbol? t) 0])) ; μ-type variables, not in Γ ;; Infers the level of a (well-formed) expression. (define/contract (level-body e Γ) (-> stlc-dll/expr? dict? natural?) (match e ['sole 0] [n #:when (natural? n) 0] [x #:when (dict-has-key? Γ x) ; free variables, get their level (level-type (type->whnf (dict-ref Γ x) Γ) Γ)] [(or `(,e : ,_) `(λ (,_ : ,_) ,e) `(inc ,e) `(new ,e) `(! ,e) `(car ,e) `(cdr ,e) `(inl ,e) `(inr ,e) `(fold ,e) `(unfold ,e) `(fold (μ ,_ ,_) ,e) `(unfold (μ ,_ ,_) ,e)) (level-body e Γ)] [(or `(set ,e1 ,e2) `(pair ,e1 ,e2) `(,e1 ,e2)) (max (level-body e1 Γ) (level-body e2 Γ))] [(or `(if ,c ,e1 ,e2) `(case ,c (,_ ⇒ ,e1) (,_ ⇒ ,e2))) (max (level-body c Γ) (level-body e1 Γ) (level-body e2 Γ))] [x #:when (symbol? x) 0])) ; local variables, not in Γ