#lang racket (require "lib.rkt") (require rackunit) ;; The Simply-Typed Lambda Calculus with higher-order *impredicative* references, ;; plus sums products booleans ascryption etc, to implement doubly-linked lists ;; Interprets a desugared, stripped expression. ;; Γ: a Table[Symbol, Expr] representing the context: ;; the current bindings in scope introduced by λx.[] ;; Σ: a Table[Symbol, Expr] representing the heap: ;; the current references on the heap generated by (gensym). mutable ;; (interpret Expr Table[Sym, Expr] Table[Sym, Expr]): Value ⊕ Err (define (interpret expr [Γ #hash()] [Σ (make-hash)]) (interpret- (strip (desugar expr)) Γ Σ)) (define (interpret- expr Γ Σ) ; (print (format "interpret: ~a" (fmt expr))) (match expr ['sole 'sole] [n #:when (natural? n) n] [b #:when (boolean? b) b] [r #:when (dict-has-key? Σ r) r] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(inc ,e) (match (interpret- e Γ Σ) [n #:when (natural? n) (+ n 1)] [e (format "incrementing an unknown value ~a" e)])] [`(if ,c ,e1 ,e2) (match (interpret- c Γ Σ) ['#t (interpret- e1 Γ Σ)] ['#f (interpret- e2 Γ Σ)] [e (err (format "calling if on unknown expression ~a" e))])] [`(pair ,e1 ,e2) `(pair ,(interpret- e1 Γ Σ) ,(interpret- e2 Γ Σ))] [`(car ,e) (match (interpret- e Γ Σ) [`(pair ,e1 ,e2) e1] [e (err (format "calling car on unknown expression ~a" e))])] [`(cdr ,e) (match (interpret- e Γ Σ) [`(pair ,e1 ,e2) e2] [e (err (format "calling cdr on unknown expression ~a" e))])] [`(inl ,e) `(inl ,(interpret- e Γ Σ))] [`(inr ,e) `(inr ,(interpret- e Γ Σ))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (interpret- e Γ Σ) [`(inl ,e) (interpret- e1 (dict-set Γ x1 e) Σ)] [`(inr ,e) (interpret- e2 (dict-set Γ x2 e) Σ)] [e (err (format "calling case on unknown expression ~a" e))])] [`(new ,e) (let ([r (gensym)]) (dict-set! Σ r e) r)] [`(! ,e) (let ([r (interpret- e Γ Σ)]) (if (dict-has-key? Σ r) (interpret- (dict-ref Σ r) Γ Σ) (err (format "attempting to deref unknown reference ~a" r))))] [`(set ,e1 ,e2) (let ([r (interpret- e1 Γ Σ)]) (if (dict-has-key? Σ r) (dict-set! Σ r (interpret- e2 Γ Σ)) (err (format "attempting to update unknown reference ~a" r)))) 'sole] [`(fold ,e) `(fold ,(interpret- e Γ Σ))] [`(unfold ,e) (match (interpret- e Γ Σ) [`(fold ,e) e] [e (err (format "attempting to unfold unknown expression ~a" e))])] [`(λ ,x ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret- e1 Γ Σ) [`(λ ,x ,e1 ,env) (interpret- e1 (dict-set env x (interpret- e2 Γ Σ)) Σ)] [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])] [e (err (format "attempting to interpret unknown expression ~a" e))])) ;; Checks that an expression is of a type, and returns #t or #f (or a bubbled-up error) ;; with: a *normalized* type ;; Γ: a Table[Symbol, Expr ⊕ Type] representing the context: ;; the current bindings in scope introduced by λx.[] and μx.[] and τx.[] ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with [Γ #hash()]) (check-core (desugar expr) with Γ)) (define (check-core expr with Γ) ; (print (format "check: ~a with ~a" (fmt expr) with)) (match expr [`(type ,t1 ,t2 ,in) (check-core in with (dict-set Γ t1 t2))] [`(inc ,e) (and (equiv? with 'Nat) (check-core e 'Nat Γ))] [`(if ,c ,e1 ,e2) (and (check-core c 'Bool Γ) (check-core e1 with Γ) (check-core e2 with Γ))] [`(pair ,e1 ,e2) (match (expand with Γ) [`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))] [t #f])] [`(car ,e) (match (expand (infer-core e Γ) Γ) [`(,t1 × ,t2) (equiv? t1 with Γ Γ)] [t #f])] [`(cdr ,e) (match (expand (infer-core e Γ) Γ) [`(,t1 × ,t2) (equiv? t2 with Γ Γ)] [t #f])] [`(inl ,e) (match (expand with Γ) [`(,t1 ⊕ ,t2) (check-core e t1 Γ)] [t #f])] [`(inr ,e) (match (expand with Γ) [`(,t1 ⊕ ,t2) (check-core e t2 Γ)] [t #f])] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (expand (infer-core e Γ) Γ) [`(,a1 ⊕ ,a2) (and (check-core e1 with (dict-set Γ x1 a1)) (check-core e2 with (dict-set Γ x2 a2)))] [t #f])] [`(new ,e) (match (expand with Γ) [`(Ref ,t) (check-core e t Γ)] [t #f])] [`(! ,e) (check-core e `(Ref ,with) Γ)] [`(set ,e1 ,e2) (match (expand (infer-core e1 Γ) Γ) [`(Ref ,t) (and (equiv? with 'Unit Γ Γ) (check-core e2 t Γ))] [t #f])] [`(fold (μ ,x ,t) ,e) (match (expand with Γ) [`(μ ,x ,t) (check-core e t (dict-set Γ x `(μ ,x ,t)))])] [`(unfold (μ ,x ,t) ,e) (and (check-core e `(μ ,x ,t) Γ) (equiv? with t Γ (dict-set Γ x `(μ ,x ,t))))] [`(fold ,e) (match (expand with Γ) [`(μ ,x ,t) (check-core e t (dict-set Γ x `(μ ,x ,t)))])] [`(unfold ,e) ; FIXME: GROSS (match* ((infer-core e Γ) with) [(`(μ ,_ ,t) `(μ ,_ ,t)) #T] [(t u) #f])] [`(λ (,x : ,t) ,e) (match (expand with Γ) [`(,t1 → ,k ,t2) (and (equiv? t t1 Γ Γ) (check-core e t2 (dict-set Γ x t)) (> k (max-level e t1 t2 (dict-set Γ x t1))))] ; KNOB [t #f])] [`(,e1 ,e2) (match (infer-core e1 Γ) [`(,t1 → ,_ ,t2) (and (equiv? with t2 Γ Γ) (check-core e2 t1 Γ))] [t #f])] [_ (equiv? with (infer-core expr Γ) Γ Γ)])) ;; Checks if two expressions or types are equivalent, up to α-conversion, ;; given their respective contexts ;; (equiv? ;; e1, e2: Expr ⊕ Type ;; Γ1, Γ2: Table[Sym (Expr ⊕ Type)] ;; ): Bool (define (equiv? e1 e2 Γ1 Γ2) (match* (e1 e2) ; bound identifiers: if a key exists in the context, look it up [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv? (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv? x1 (dict-ref Γ2 x2) Γ1 Γ2)] ; recursive types: self-referential names can be arbitrary [(`(μ ,x1 ,t1) `(μ ,x2 ,t2)) (let ([name gensym]) (equiv? t1 t2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] ; function expressions: parameter names can be arbitrary [(`(λ (,x1 : ,t1) ,e1) `(λ (,x2 : ,t2) ,e2)) (let ([name gensym]) (and (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)) (equiv? t1 t2 Γ1 Γ2)))] [(`(λ ,x1 ,e1) `(λ ,x2 ,e2)) (let ([name gensym]) (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] ; check for syntactic equivalence on lists and values [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv? x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)])) ;; Infers a type from a given expression, if possible, or errors out. ;; (infer Expr Table[Sym, Type]): Type (define (infer expr [Γ #hash()]) (infer-core (desugar expr) Γ)) (define (infer-core expr Γ) ; (print (format "infer: ~a" (fmt expr))) (match expr ['sole 'Unit] [n #:when (natural? n) 'Nat] [b #:when (boolean? b) 'Bool] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(type ,t1 ,t2 ,in) (infer-core in (dict-set Γ t1 t2))] [`(,e : ,t) (if (check-core e t Γ) t (err (format "annotated expression ~a is not of annotated type ~a" e t)))] [`(inc ,e) (if (check-core e 'Nat Γ) 'Nat (err (format "calling inc on incorrect type ~a" (infer-core e Γ))))] [`(if ,c ,e1 ,e2) (if (check-core c 'Bool Γ) (let ([t (infer-core e1 Γ)]) (if (check-core e2 t Γ) t (err (format "condition has branches of differing types ~a and ~a" t (infer-core e2 Γ))))) (err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))] [`(pair ,e1 ,e2) `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))] [`(car ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t1] [t (err (format "calling car on incorrect type ~a" t))])] [`(cdr ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t2] [t (err (format "calling cdr on incorrect type ~a" t))])] [`(inl ,e) (err (format "unable to infer the type of a raw inl"))] [`(inr ,e) (err (format "unable to infer the type of a raw inr"))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer-core e Γ) [`(,a1 ⊕ ,a2) (let ([b1 (infer-core e1 (dict-set Γ x1 a1))] [b2 (infer-core e2 (dict-set Γ x2 a2))]) (if (equiv? b1 b2 Γ Γ) b1 (err (format "case ~a is not of consistent type!" `(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))] [t (err (format "calling case on incorrect type ~a" t))])] [`(new ,e) `(Ref ,(infer-core e Γ))] [`(! ,e) (match (infer-core e Γ) [`(Ref ,t) t] [t (err (format "attempting to deref term ~a of type ~a" e t))])] [`(set ,e1 ,e2) (match (infer-core e1 Γ) [`(Ref ,t) (if (check-core e2 t Γ) 'Unit (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type" e1 t e2 (infer-core e2 Γ))))] [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])] [`(fold (μ ,x ,t) ,e) (if (check-core e t (dict-set Γ x `(μ ,x ,t))) `(μ ,x ,t) (err (format "expected ~a to be of type ~a, got ~a" e t (infer e (dict-set Γ x `(μ ,x ,t))))))] [`(unfold (μ ,x ,t) ,e) (if (check-core e `(μ ,x ,t)) (replace t x `(μ ,x ,t)) (err (format "expected ~a to be of type ~a, got ~a" e `(μ ,x ,t) (infer-core e Γ))))] [`(fold ,e) (match (expand (infer-core e Γ) Γ) [`(μ ,x ,t) `(μ ,x ,t)] [t (err (format "expected ~a to be recursive, got ~a" e t))])] [`(unfold ,e) (match (expand (infer-core e Γ) Γ) [`(μ ,x ,t) (replace t x `(μ ,x ,t))] ; AAAA [t (err (format "expected ~a to be recursive, got ~a" e t))])] [`(λ (,x : ,t1) ,e) (let ([t2 (infer-core e (dict-set Γ x t1))]) (let ([k (+ 1 (max-level e t1 t2 (dict-set Γ x t1)))]) ; KNOB `(,t1 → ,k ,t2)))] [`(,e1 ,e2) (match (infer-core e1 Γ) [`(,t1 → ,k ,t2) (if (check-core e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer-core e2 Γ))))] [`(,t1 → ,t2) (err (format "missing level annotation on function type"))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "attempting to infer an unknown expression ~a" e))])) ;; Expands a type alias to a matchable outside structure, for literal matching. ;; (expand Type Table[Id, Expr ⊕ Type]): Type (define (expand t Γ) (if (dict-has-key? Γ t) (expand (dict-ref Γ t) Γ) t)) (define (replace expr key value) (match expr ; do not accidentally replace shadowed bindings [(or `(λ (,x : ,_) ,_) `(λ ,x ,_) `(μ ,x ,_) `(type ,x ,_ ,_)) #:when (equal? x key) expr] [x #:when (equal? x key) value] [`(,e ...) `(,@(map (λ (x) (replace x key value)) e))] [v v])) ;; Checks if a type is well-formed in the current context. ;; (well-formed Type Context): Bool (define (well-formed t Γ) (if (well-formed-friend t Γ) #t (err (format "type ~a is not well-formed!" t)))) (define (well-formed-friend t Γ) (match t [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [(or 'Unit 'Nat 'Bool) #t] [`(Ref ,t) (well-formed-friend t Γ)] [`(μ ,x ,t) (well-formed-friend t (dict-set Γ x 'Unit))] ; HACK [(or `(,t1 → ,t2) `(,t1 → ,_ ,t2) `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-formed-friend t1 Γ) (well-formed-friend t2 Γ))] [_ #f])) ;; (max-level Table[Sym, Type] Expr Type Type): Natural (define (max-level e t1 t2 Γ) (max (level-type t1 Γ) (level-type t2 Γ) (level-body e Γ))) ;; (level-type Type): Natural (define (level-type t Γ) (match (expand t Γ) ['Unit 0] ['Nat 0] [`(,t1 × ,t2) (max (level-type t1 Γ) (level-type t2 Γ))] [`(,t1 ⊕ ,t2) (max (level-type t1 Γ) (level-type t2 Γ))] [`(μ ,x ,t) (level-type t (dict-set Γ x 'Unit))] ; VERY WEIRD [`(,t1 → ,k ,t2) (if (or (< k (level-type t1 Γ)) (< k (level-type t2 Γ))) (err (format "annotated level ~a is less than inferred levels of ~a and ~a!" k t1 t2)) k)] [`(Ref ,t) (let ([k (level-type t Γ)]) (if (zero? k) 0 (+ 1 k)))] ; KNOB [t (err (format "attempting to infer the level of unknown type ~a" t))])) ;; (level-body Expr Table[Sym, Type]): Natural (define (level-body e Γ) ; FIXME: this part is mostly wrong (match e [`(,e : ,t) (level-type t Γ)] ; hrm ['sole 0] [n #:when (natural? n) 0] [x #:when (dict-has-key? Γ x) (level-type (dict-ref Γ x) Γ)] [`(inc ,e) (level-body e Γ)] [`(new ,e) (level-body e Γ)] [`(pair ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))] [`(car ,e) (level-body e Γ)] [`(cdr ,e) (level-body e Γ)] [`(inl ,e) (level-body e Γ)] [`(inr ,e) (level-body e Γ)] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (max (level-body e Γ) (level-body e1 (dict-set Γ x1 'Unit)) ; FIXME: totally incorrect (level-body e2 (dict-set Γ x2 'Unit)))] [`(fold (μ ,x ,t) ,e) (level-body e Γ)] [`(unfold (μ ,x ,t) ,e) (level-body e Γ)] [`(fold ,e) (level-body e Γ)] [`(unfold ,e) (level-body e Γ)] [`(! ,e) (level-body e Γ)] [`(set ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))] [`(if ,c ,e1 ,e2) (max (level-body c Γ) (level-body e1 Γ) (level-body e2 Γ))] [`(λ (,x : ,t) ,e) (level-body e (dict-set Γ x t))] ; todo: should be 0? [`(,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))])) (check-exn exn:fail? (λ () (infer ' (let (id : (Nat → 1 Nat)) (λ x x) (let (r : (Ref (Nat → 1 Nat))) (new id) (let (f : (Nat → 3 Nat)) (λ x ((! r) x)) (set r f (f 0)))))))) (check-eq? (infer ' (let (id : (Nat → 1 Nat)) (λ x x) (let (r : (Ref (Nat → 1 Nat))) (new id) (let (f : (Nat → 3 Nat)) (λ x ((! r) x)) (f 0))))) 'Nat) (check-eq? (check ' (let (id : (Nat → 1 Nat)) (λ x x) (let (r : (Ref (Nat → 1 Nat))) (new id) (let (f : (Nat → 3 Nat)) (λ x ((! r) x)) (f 0)))) 'Nat) #t) (check-eq? (interpret '(if #t 1 0)) 1) (check-eq? (interpret '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 2) (check-eq? (infer '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 'Nat) (check-true (check '(type Natural Nat ((λ (x : Natural) (inc x)) 1)) 'Nat)) (check-equal? (infer '(case ((inr sole) : (Nat ⊕ Unit)) (x ⇒ 0) (x ⇒ 1))) 'Nat) (check-true (check '(case ((inr sole) : (Nat ⊕ Unit)) (x ⇒ x) (x ⇒ 1)) 'Nat)) (check-equal? (interpret '((λ p1 (car (unfold p1))) (fold (pair 413 (pair (inl sole) (inl sole)))))) 413) ;; initial implementation of doubly linked lists: ;; (type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit))))) (check-equal? (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (let get (λ x (car (unfold x))) (let my_list (fold (pair 413 (pair (inl sole) (inl sole)))) (get my_list))))) 413) (check-equal? (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (let prev (λ x (case (car (cdr (unfold x))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let my_list (fold (pair 413 (pair (inl (new sole)) (inl (new sole))))) (prev my_list))))) '(inl sole)) (check-equal? (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (let next (λ x (case (cdr (cdr (unfold x))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let my_list (fold (pair 413 (pair (inr (new sole)) (inr (new sole))))) (next my_list))))) '(inr sole)) (check-equal? (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (λ (self : DoublyLinkedList) (case (cdr (cdr (unfold self))) (x ⇒ ((inl (! x)) : (DoublyLinkedList ⊕ Unit))) (x ⇒ ((inr sole) : (DoublyLinkedList ⊕ Unit))))))) '(DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit))) (check-true (check '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (λ (self : DoublyLinkedList) (case (cdr (cdr (unfold self))) (x ⇒ ((inl (! x)) : (DoublyLinkedList ⊕ Unit))) (x ⇒ ((inr sole) : (DoublyLinkedList ⊕ Unit)))))) '(DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit)))) (check-equal? (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (let (get : (DoublyLinkedList → 1 Nat)) (λ self (car (unfold self))) (let (prev : (DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit))) (λ self (case (car (cdr (unfold self))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let (next : (DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit))) (λ self (case (cdr (cdr (unfold self))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let (my_list : DoublyLinkedList) (fold (pair 413 (pair ((inr sole) : ((Ref DoublyLinkedList) ⊕ Unit)) ((inr sole) : ((Ref DoublyLinkedList) ⊕ Unit))))) (prev my_list))))))) '(DoublyLinkedList ⊕ Unit)) (check-true (check '(type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))) (let (get : (DoublyLinkedList → 1 Nat)) (λ self (car (unfold self))) (let (prev : (DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit))) (λ self (case (car (cdr (unfold self))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let (next : (DoublyLinkedList → 1 (DoublyLinkedList ⊕ Unit))) (λ self (case (cdr (cdr (unfold self))) (x ⇒ (inl (! x))) (x ⇒ (inr sole)))) (let (my_list : DoublyLinkedList) (fold (pair 413 (pair ((inr sole) : ((Ref DoublyLinkedList) ⊕ Unit)) ((inr sole) : ((Ref DoublyLinkedList) ⊕ Unit))))) (prev my_list)))))) '(DoublyLinkedList ⊕ Unit))) ;; new implementation of doubly linked lists: ;; (type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))) (check-equal? (interpret '(let next (λ self (case (unfold self) (some ⇒ (! (cdr (cdr some)))) (none ⇒ (fold (inr sole))))) (let my_list (fold (inl (pair 413 (pair (new (inr sole)) (new (inr sole)))))) (next my_list)))) '(inr sole)) ; issue: we only need annotations on the first case here because stlc-dll will try and return (μ Self (Nat × (Ref Self) × (Ref Self))) instead. this is perhaps bad, there should be some way to recover the original bindings... maybe?? ; todo: check should be able to place annotations on the right place idk ; ok that is done. still original issue tho (check-equal? (infer '(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) (λ (self : DoublyLinkedList) (case (unfold self) (some ⇒ ((! (cdr (cdr some))) : DoublyLinkedList)) (none ⇒ ((fold (inr sole)) : DoublyLinkedList)))))) '(DoublyLinkedList → 1 DoublyLinkedList)) (check-true (check '(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) (let (get : (DoublyLinkedList → 1 (Nat ⊕ Unit))) (λ self (case (unfold self) (some ⇒ (inl (car some))) (none ⇒ (inr sole)))) (let (prev : (DoublyLinkedList → 1 DoublyLinkedList)) (λ self (case (unfold self) (some ⇒ (! (car (cdr some)))) (none ⇒ ((fold (inr sole)) : DoublyLinkedList)))) (let (next : (DoublyLinkedList → 1 DoublyLinkedList)) (λ self (case (unfold self) (some ⇒ (! (cdr (cdr some)))) (none ⇒ ((fold (inr sole)) : DoublyLinkedList)))) (let (my_list : DoublyLinkedList) (fold (inl (pair 413 (pair (new ((fold (inr sole)) : DoublyLinkedList)) (new ((fold (inr sole)) : DoublyLinkedList)))))) (prev my_list)))))) 'DoublyLinkedList))