#lang racket (require "lib.rkt" "base.rkt") (require (only-in "stlc-rec.rkt" replace)) (require (only-in "stlc-ext.rkt" expand)) (provide interpret check infer level-type level-body equiv-type) ;; The Simply-Typed Lambda Calculus with higher-order *impredicative* references, ;; plus sums products booleans ascryption etc, to implement doubly-linked lists ;; (interpret Expr Table[Sym, Expr] Table[Sym, Expr]): Value ⊕ Err (define (interpret expr) (interpret-core (strip (desugar expr)) #hash() (make-hash))) ;; Γ: a Table[Symbol, Expr] representing the context: ;; the current bindings in scope introduced by λx.[] ;; Σ: a Table[Symbol, Expr] representing the heap: ;; the current references on the heap generated by (gensym). mutable ;; Interprets a *desugared* expression *stripped* of type annotations. (define (interpret-core expr Γ Σ) (match expr ['sole 'sole] [n #:when (natural? n) n] [b #:when (boolean? b) b] [r #:when (dict-has-key? Σ r) r] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(inc ,e) (match (interpret-core e Γ Σ) [n #:when (natural? n) (+ n 1)] [e (format "incrementing an unknown value ~a" e)])] [`(if ,c ,e1 ,e2) (match (interpret-core c Γ Σ) ['#t (interpret-core e1 Γ Σ)] ['#f (interpret-core e2 Γ Σ)] [e (err (format "calling if on unknown expression ~a" e))])] [`(pair ,e1 ,e2) `(pair ,(interpret-core e1 Γ Σ) ,(interpret-core e2 Γ Σ))] [`(car ,e) (match (interpret-core e Γ Σ) [`(pair ,e1 ,e2) e1] [e (err (format "calling car on unknown expression ~a" e))])] [`(cdr ,e) (match (interpret-core e Γ Σ) [`(pair ,e1 ,e2) e2] [e (err (format "calling cdr on unknown expression ~a" e))])] [`(inl ,e) `(inl ,(interpret-core e Γ Σ))] [`(inr ,e) `(inr ,(interpret-core e Γ Σ))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (interpret-core e Γ Σ) [`(inl ,e) (interpret-core e1 (dict-set Γ x1 e) Σ)] [`(inr ,e) (interpret-core e2 (dict-set Γ x2 e) Σ)] [e (err (format "calling case on unknown expression ~a" e))])] [`(new ,e) (let ([r (gensym)]) (dict-set! Σ r e) r)] [`(! ,e) (let ([r (interpret-core e Γ Σ)]) (if (dict-has-key? Σ r) (interpret-core (dict-ref Σ r) Γ Σ) (err (format "attempting to deref unknown reference ~a" r))))] [`(set ,e1 ,e2) (let ([r (interpret-core e1 Γ Σ)]) (if (dict-has-key? Σ r) (dict-set! Σ r (interpret-core e2 Γ Σ)) (err (format "attempting to update unknown reference ~a" r)))) 'sole] [`(fold ,e) `(fold ,(interpret-core e Γ Σ))] [`(unfold ,e) (match (interpret-core e Γ Σ) [`(fold ,e) e] [e (err (format "attempting to unfold unknown expression ~a" e))])] [`(λ ,x ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret-core e1 Γ Σ) [`(λ ,x ,e1 ,env) (interpret-core e1 (dict-set env x (interpret-core e2 Γ Σ)) Σ)] [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])] [e (err (format "attempting to interpret unknown expression ~a" e))])) ;; Checks that an expression is of a type, and returns #t or #f (or a bubbled-up error) ;; with: a type in weak-head normal form (!!) ;; Γ: a Table[Symbol, Expr ⊕ Type] representing the context: ;; the current bindings in scope introduced by λx.[] and μx.[] and τx.[] ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with) (check-core (desugar expr) with #hash())) (define (check-core expr with Γ) (match expr [`(type ,t1 ,t2 ,in) (check-core in with (dict-set Γ `(type ,t1) t2))] [`(if ,c ,e1 ,e2) (and (check-core c 'Bool Γ) (check-core e1 with Γ) (check-core e2 with Γ))] [`(pair ,e1 ,e2) (match with [`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))] [_ #f])] [`(inl ,e) (match with [`(,t1 ⊕ ,t2) (check-core e t1 Γ)] [_ #f])] [`(inr ,e) (match with [`(,t1 ⊕ ,t2) (check-core e t2 Γ)] [_ #f])] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer-core e Γ) ; avoid needing type annotation on e [`(,a1 ⊕ ,a2) (and (check-core e1 with (dict-set Γ x1 a1)) (check-core e2 with (dict-set Γ x2 a2)))] [_ #f])] [`(new ,e) (match with [`(Ref ,t) (check-core e t Γ)] [_ #f])] [`(! ,e) (check-core e `(Ref ,with) Γ)] [`(fold ,e) (match with [`(μ ,x ,t) (check-core e t (dict-set Γ `(type ,x) `(μ ,x ,t)))] [_ #f])] [`(λ (,x : ,t) ,e) (match with [`(,t1 → ,k ,t2) (and (equiv-type t t1 Γ) (check-core e t2 (dict-set Γ x t)) (> k (level-body e (dict-set Γ x t1))))] ; KNOB [`(,t1 → ,t2) (err (format "missing level annotation on function type"))] [_ #f])] [_ (equiv-type (infer-core expr Γ) with Γ)])) ;; Checks if two types are equivalent up to α-conversion in context ;; (equiv-type Type Type Table[Sym Type]): Bool (define (equiv-type e1 e2 Γ) (equiv-type-core e1 e2 Γ Γ)) (define (equiv-type-core e1 e2 Γ1 Γ2) (match* (e1 e2) ; bound identifiers: if a key exists in the context, look it up [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv-type-core (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv-type-core x1 (dict-ref Γ2 x2) Γ1 Γ2)] ; recursive types: self-referential names can be arbitrary [(`(μ ,x1 ,t1) `(μ ,x2 ,t2)) (let ([name gensym]) (equiv-type-core t1 t2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] ; check for syntactic equivalence on remaining forms [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)])) ;; Infers a type from a given expression, if possible, or errors out. ;; Returns a type in weak-head normal form for structural matching. ;; (infer Expr Table[Sym, Type]): Type (define (infer expr) (infer-core (desugar expr) #hash())) (define (infer-core expr Γ) (match expr ['sole 'Unit] [n #:when (natural? n) 'Nat] [b #:when (boolean? b) 'Bool] [x #:when (dict-has-key? Γ x) (expand (dict-ref Γ x) Γ)] [`(type ,t1 ,t2 ,in) (infer-core in (dict-set Γ `(type ,t1) t2))] [`(,e : ,t) ; we have a manual type annotation, so we must expand to weak-head normal form (if (check-core e (expand t Γ) Γ) (expand t Γ) (err (format "annotated expression ~a is not of annotated type ~a" e t)))] [`(inc ,e) (if (check-core e 'Nat Γ) 'Nat (err (format "calling inc on incorrect type ~a" (infer-core e Γ))))] [`(if ,c ,e1 ,e2) (if (check-core c 'Bool Γ) (let ([t (infer-core e1 Γ)]) (if (check-core e2 t Γ) t (err (format "condition has branches of differing types ~a and ~a" t (infer-core e2 Γ))))) (err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))] [`(pair ,e1 ,e2) `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))] [`(car ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t1] [t (err (format "calling car on incorrect type ~a" t))])] [`(cdr ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t2] [t (err (format "calling cdr on incorrect type ~a" t))])] [`(inl ,e) (err (format "unable to infer the type of a raw inl"))] [`(inr ,e) (err (format "unable to infer the type of a raw inr"))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer-core e Γ) [`(,a1 ⊕ ,a2) (let ([b1 (infer-core e1 (dict-set Γ x1 a1))] [b2 (infer-core e2 (dict-set Γ x2 a2))]) (if (equiv-type b1 b2 Γ) b1 (err (format "case ~a is not of consistent type!" `(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))] [t (err (format "calling case on incorrect type ~a" t))])] [`(new ,e) `(Ref ,(infer-core e Γ))] [`(! ,e) (match (infer-core e Γ) [`(Ref ,t) t] [t (err (format "attempting to deref term ~a of type ~a" e t))])] [`(set ,e1 ,e2) (match (infer-core e1 Γ) [`(Ref ,t) (if (check-core e2 t Γ) 'Unit (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type" e1 t e2 (infer-core e2 Γ))))] [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])] [`(unfold ,e) (match (infer-core e Γ) [`(μ ,x ,t) (replace t x `(μ ,x ,t))] [t (err (format "expected ~a to be recursive, got ~a" e t))])] [`(λ (,x : ,t1) ,e) (let* ([t2 (infer-core e (dict-set Γ x t1))] [t1 (expand t1 Γ)] ; type annotation, must expand [k (+ 1 (level-body e (dict-set Γ x t1)))]) ; KNOB `(,t1 → ,k ,t2))] [`(,e1 ,e2) (match (infer-core e1 Γ) [`(,t1 → ,k ,t2) (if (check-core e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer-core e2 Γ))))] [`(,t1 → ,t2) (err (format "missing level annotation on function type"))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "attempting to infer an unknown expression ~a" e))])) ;; Checks if a type is well-formed in the current context. ;; BIG ASSUMPTION: types in the current context are well-formed ;; (well-formed Type Context): Bool (define (well-formed t Γ) (match t [x #:when (dict-has-key? Γ x) #t] [(or 'Unit 'Nat 'Bool) #t] [`(Ref ,t) (well-formed t Γ)] [`(μ ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))] [`(type ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))] [(or `(,t1 → ,_ ,t2) `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-formed t1 Γ) (well-formed t2 Γ))] [_ #f])) ;; Checks if a type is well-kinded with respect to a level in the current context ;; BIG ASSUMPTION: types in the current context are well-formed ;; (well-kinded Type Level Context): Bool (define (well-kinded t l Γ) (match t [x #:when (dict-has-key? Γ x) #t] [(or 'Unit 'Nat 'Bool) (>= l 0)] [`(Ref ,t) (if (zero? l) (well-kinded t l Γ) (well-kinded t (- l 1) Γ))] [`(μ ,x ,t) (well-kinded t l (dict-set Γ x `(μ ,x ,t)))] [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-kinded t1 l Γ) (well-kinded t2 l Γ))] [`(,t1 → ,k ,t2) (and (>= l k) (well-kinded t1 k Γ) (well-kinded t2 k Γ))] [_ #f])) ;; Infers the level of a (well-formed) type. ;; (level-type Type): Natural (define (level-type t Γ) (match t [x #:when (dict-has-key? Γ x) (level-type (dict-ref Γ x) Γ)] [(or 'Unit 'Nat) 0] [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (max (level-type t1 Γ) (level-type t2 Γ))] [`(μ ,x ,t) ; note: correct but VERY WEIRD (level-type t Γ)] [`(,t1 → ,k ,t2) (if (and (>= k (level-type t1 Γ)) (>= k (level-type t2 Γ))) k ; KNOB (err (format "annotated level ~a is less than inferred levels of ~a and ~a!" k t1 t2)))] [`(Ref ,t) (let ([k (level-type t Γ)]) (if (zero? k) 0 (+ 1 k)))] ; KNOB [t #:when (symbol? t) 0])) ; μ-type variables, not in Γ ;; Infers the level of a (well-formed) expression. ;; (level-body Expr Context): Natural (define (level-body e Γ) (match e ['sole 0] [n #:when (natural? n) 0] [x #:when (dict-has-key? Γ x) ; free variables, get their level (level-type (expand (dict-ref Γ x) Γ) Γ)] [(or `(,e : ,_) `(λ (,_ : ,_) ,e) `(inc ,e) `(new ,e) `(! ,e) `(car ,e) `(cdr ,e) `(inl ,e) `(inr ,e) `(fold ,e) `(unfold ,e) `(fold (μ ,_ ,_) ,e) `(unfold (μ ,_ ,_) ,e)) (level-body e Γ)] [(or `(set ,e1 ,e2) `(pair ,e1 ,e2) `(,e1 ,e2)) (max (level-body e1 Γ) (level-body e2 Γ))] [(or `(if ,c ,e1 ,e2) `(case ,c (,_ ⇒ ,e1) (,_ ⇒ ,e2))) (max (level-body c Γ) (level-body e1 Γ) (level-body e2 Γ))] [x #:when (symbol? x) 0])) ; local variables, not in Γ