#lang racket (require "lib.rkt") (require rackunit) (provide (all-defined-out)) ;; The Simply-Typed Lambda Calculus, with simple extensions ;; Unit/String/Natural/Boolean, pairs, sums, lists, ascryption ;; (interpret Expr Table[Sym, Expr]): Value (define (interpret expr [Γ #hash()]) (interpret- (strip (desugar expr)) Γ)) (define (interpret- expr Γ) (match expr ['sole 'sole] [s #:when (string? s) s] [n #:when (natural? n) n] [b #:when (boolean? b) b] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(inc ,e) (match (interpret- e Γ) [n #:when (natural? n) (+ n 1)] [e (format "incrementing an unknown value ~a" e)])] [`(if ,c ,e1 ,e2) (match (interpret- c Γ) ['#t (interpret- e1 Γ)] ['#f (interpret- e2 Γ)] [e (err (format "calling if on unknown expression ~a" e))])] [`(pair ,e1 ,e2) `(pair ,(interpret- e1 Γ) ,(interpret- e2 Γ))] [`(car ,e) (match (interpret- e Γ) [`(pair ,e1 ,e2) e1] [e (err (format "calling car on unknown expression ~a" e))])] [`(cdr ,e) (match (interpret- e Γ) [`(pair ,e1 ,e2) e2] [e (err (format "calling cdr on unknown expression ~a" e))])] [`(inl ,e) `(inl ,(interpret- e Γ))] [`(inr ,e) `(inr ,(interpret- e Γ))] [`(case ,e ,f1 ,f2) (match (interpret- e Γ) [`(inl ,e) (interpret- `(,f1 ,e) Γ)] [`(inr ,e) (interpret- `(,f2 ,e) Γ)] [e (err (format "calling case on unknown expression ~a" e))])] ['nil 'nil] [`(nil? ,e) (match (interpret- e Γ) ['nil '#t] [`(cons ,e1 ,e2) '#f] [e (err (format "calling isnil on unknown expression ~a" e))])] [`(cons ,e1 ,e2) `(cons ,(interpret- e1 Γ) ,(interpret- e2 Γ))] [`(head ,e) (match (interpret- e Γ) [`(cons ,e1 ,e2) (interpret- e1 Γ)] [e (err (format "calling head on unknown expression ~a" e))])] [`(tail ,e) (match (interpret- e Γ) [`(cons ,e1 ,e2) (interpret- e2 Γ)] [e (err (format "calling tail on unknown expression ~a" e))])] [`(λ ,x ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret- e1 Γ) [`(λ ,x ,e ,env) (interpret- e (dict-set env x (interpret- e2 Γ)))] [e (err (format "applying arg ~a to unknown expression ~a" e2 e))])] [e (err (format "interpreting an unknown expression ~a" e))])) ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with [Γ #hash()]) (check- (desugar expr) with Γ)) (define (check- expr with Γ) (let ([with (expand with Γ)]) (match* (expr with) [('sole 'Unit) #t] [(s 'Str) #:when (string? s) #t] [(n 'Nat) #:when (natural? n) #t] [(b 'Bool) #:when (boolean? b) #t] [(e `(,t1 ⊕ ,t2)) (or (check- e t1 Γ) (check- e t2 Γ))] [(x _) #:when (dict-has-key? Γ x) (equiv? (dict-ref Γ x) with Γ Γ)] [(`(type ,t1 ,t2 ,in) with) (check- in with (dict-set Γ t1 t2))] [(`(inc ,e) 'Nat) (check- e 'Nat Γ)] [(`(if ,c ,e1 ,e2) with) (and (check- c 'Bool Γ) (check- e1 with Γ) (check e2 with Γ))] [(`(pair ,e1 ,e2) `(,t1 × ,t2)) (and (check- e1 t1 Γ) (check- e2 t2 Γ))] [(`(car ,e) with) (match (infer- e Γ) [`(,t1 × ,t2) (equiv? t1 with Γ Γ)] [t #f])] [(`(cdr ,e) with) (match (infer- e Γ) [`(,t1 × ,t2) (equiv? t2 with Γ Γ)] [t #f])] [(`(inl ,e) with) (match (infer- e Γ) [`(,t1 ⊕ ,t2) (equiv? t1 with Γ Γ)] [t #f])] [(`(inr ,e) with) (match (infer- e Γ) [`(,t1 ⊕ ,t2) (equiv? t2 with Γ Γ)] [t #f])] [(`(case ,e ,f1 ,f2) with) (match* ((infer- f1 Γ) (infer- f2 Γ)) [(`(,a1 → ,t1) `(,a2 → ,t2)) (and (check- e `(,a1 ⊕ ,a2)) (check- f1 `(,a1 → ,with) Γ) (check- f2 `(,a2 → ,with) Γ))] [(t1 t2) #f])] [(`(,e : ,t) with) (and (equiv? t with Γ Γ) (check- e t Γ))] [('nil `(List ,t)) #t] [(`(cons ,f1 ,f2) `(List ,t)) (and (check- f1 t Γ) (check- f2 `(List ,t) Γ))] [(`(head ,e) with) (match (infer- e) [`(List ,t) (equiv? t with Γ Γ)] [t #f])] [(`(tail ,e) with) (equiv? (infer- e Γ) with Γ Γ)] [(`(λ (,x : ,t) ,e) `(,t1 → ,t2)) (and (equiv? t t1 Γ Γ) (check- e t2 (dict-set Γ x t1)))] [(`(,e1 ,e2) t) (match (infer- e1 Γ) [`(,t1 → ,t2) (and (equiv? t2 t Γ Γ) (equiv? t1 (infer- e2 Γ) Γ Γ))] [t #f])] [(e t) #f]))) ;; (infer Expr Table[Sym, Type]): Type (define (infer expr [Γ #hash()]) (infer- (desugar expr) Γ)) (define (infer- expr Γ) (match expr ['sole 'Unit] [s #:when (string? s) 'Str] [n #:when (natural? n) 'Nat] [b #:when (boolean? b) 'Bool] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(type ,t1 ,t2 ,in) (infer in (dict-set Γ t1 t2))] [`(inc ,e) (if (check- e 'Nat Γ) 'Nat (err (format "calling inc on incorrect type ~a" (infer- e Γ))))] [`(if ,c ,e1 ,e2) (if (check- c 'Bool Γ) (let ([t (infer- e1 Γ)]) (if (check- e2 t Γ) t (err (format "condition has branches of differing types ~a and ~a" t (infer- e2 Γ))))) (err (format "condition ~a has incorrect type ~a" c (infer- c Γ))))] [`(pair ,e1 ,e2) `(,(infer- e1 Γ) × ,(infer- e2 Γ))] [`(car ,e) (match (infer- e Γ) [`(,t1 × ,t2) t1] [t (err (format "calling car on incorrect type ~a" t))])] [`(cdr ,e) (match (infer- e Γ) [`(,t1 × ,t2) t2] [t (err (format "calling cdr on incorrect type ~a" t))])] [`(inl ,e) (match (infer- e Γ) [`(,t1 ⊕ ,t2) t1] [t (err (format "calling inl on incorrect type ~a" t))])] [`(inr ,e) (match (infer- e Γ) [`(,t1 ⊕ ,t2) t2] [t (err (format "calling inr on incorrect type ~a" t))])] [`(case ,e ,f1 ,f2) (match* ((infer- f1 Γ) (infer- f2 Γ)) [(`(,a1 → ,t1) `(,a2 → ,t2)) (if (and (check- e `(,a1 ⊕ ,a2)) (equiv? t1 t2 Γ Γ)) t1 (err (format "case ~a is not of consistent type!" `(case ,e ,f1 ,f2))))] [(t1 t2) (err (format "case ~a is malformed!" `(case ,e ,f1 ,f2)))])] [`(,e : ,t) (if (check- e t Γ) t (err (format "annotated expression ~a is not of annotated type ~a" e t)))] ['nil (err (format "unable to infer type of empty list!"))] [`(cons ,e1 ,e2) (let ([t (infer- e1 Γ)]) (if (check- e2 `(List ,t) Γ) `(List ,t) (err (format "list ~a is not of consistent type!" `(cons ,e1 ,e2)))))] [`(head ,e) (match (infer- e Γ) [`(List ,t) t] [t (err (format "calling head on incorrect type ~a" t))])] [`(tail ,e) (match (infer- e Γ) [`(List ,t) `(List ,t)] [t (err (format "calling tail on incorrect type ~a" t))])] [`(λ (,x : ,t) ,e) `(,t → ,(infer- e (dict-set Γ x t)))] [`(,e1 ,e2) (match (infer- e1 Γ) [`(,t1 → ,t2) (if (check- e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a" t1 e2)))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "inferring an unknown expression ~a" e))])) (define (expand t Γ) (if (dict-has-key? Γ t) (dict-ref Γ t) t)) ;; checks if two expressions are equivalent up to α-renaming and ascryption (define (equiv? e1 e2 [Γ1 #hash()] [Γ2 #hash()]) (match* (e1 e2) [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv? (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv? x1 (dict-ref Γ2 x2) Γ1 Γ2)] [(`(λ (,x1 : ,t1) ,e1) `(λ (,x2 : ,t2) ,e2)) ; todo: merge these into one (let ([name gensym]) (and (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)) (equiv? t1 t2 Γ1 Γ2)))] [(`(λ ,x1 ,e1) `(λ ,x2 ,e2)) (let ([name gensym]) (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv? x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)])) (check-true (equiv? '(λ a a) '(λ b b))) (check-true (equiv? '(λ a (λ b a)) '(λ b (λ a b)))) (check-true (equiv? '(λ a (λ b (λ c (a (b c))))) '(λ c (λ a (λ b (c (a b))))))) (check-eq? (interpret '(if #t 1 0)) 1) (check-eq? (interpret '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 2) (check-eq? (infer '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 'Nat) (check-true (check '(type Natural Nat ((λ (x : Natural) (inc x)) 1)) 'Nat))