#lang racket (require "lib.rkt") (require "base.rkt") (provide interpret check infer expand equiv-type equiv-term) ;; The Simply-Typed Lambda Calculus, with simple extensions ;; Unit/String/Natural/Boolean, pairs, sums, lists, ascryption ;; (interpret Expr Table[Sym, Expr]): Value (define (interpret expr) (interpret-core (strip (desugar expr)) #hash())) (define (interpret-core expr Γ) (match expr ['sole 'sole] [s #:when (string? s) s] [n #:when (natural? n) n] [b #:when (boolean? b) b] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(inc ,e) (match (interpret-core e Γ) [n #:when (natural? n) (+ n 1)] [e (format "incrementing an unknown value ~a" e)])] [`(if ,c ,e1 ,e2) (match (interpret-core c Γ) ['#t (interpret-core e1 Γ)] ['#f (interpret-core e2 Γ)] [e (err (format "calling if on unknown expression ~a" e))])] [`(pair ,e1 ,e2) `(pair ,(interpret-core e1 Γ) ,(interpret-core e2 Γ))] [`(car ,e) (match (interpret-core e Γ) [`(pair ,e1 ,e2) e1] [e (err (format "calling car on unknown expression ~a" e))])] [`(cdr ,e) (match (interpret-core e Γ) [`(pair ,e1 ,e2) e2] [e (err (format "calling cdr on unknown expression ~a" e))])] [`(inl ,e) `(inl ,(interpret-core e Γ))] [`(inr ,e) `(inr ,(interpret-core e Γ))] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (interpret-core e Γ) [`(inl ,e) (interpret-core e1 (dict-set Γ x1 e))] [`(inr ,e) (interpret-core e2 (dict-set Γ x2 e))] [e (err (format "calling case on unknown expression ~a" e))])] ['nil 'nil] [`(nil? ,e) (match (interpret-core e Γ) ['nil '#t] [`(cons ,e1 ,e2) '#f] [e (err (format "calling isnil on unknown expression ~a" e))])] [`(cons ,e1 ,e2) `(cons ,(interpret-core e1 Γ) ,(interpret-core e2 Γ))] [`(head ,e) (match (interpret-core e Γ) [`(cons ,e1 ,e2) (interpret-core e1 Γ)] [e (err (format "calling head on unknown expression ~a" e))])] [`(tail ,e) (match (interpret-core e Γ) [`(cons ,e1 ,e2) (interpret-core e2 Γ)] [e (err (format "calling tail on unknown expression ~a" e))])] [`(λ ,x ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret-core e1 Γ) [`(λ ,x ,e ,env) (interpret-core e (dict-set env x (interpret-core e2 Γ)))] [e (err (format "applying arg ~a to unknown expression ~a" e2 e))])] [e (err (format "interpreting an unknown expression ~a" e))])) ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with) (check-core (desugar expr) with #hash())) (define (check-core expr with Γ) (match expr [`(type ,t1 ,t2 ,in) (check-core in with (dict-set Γ t1 t2))] [`(if ,c ,e1 ,e2) (and (check-core c 'Bool Γ) (check-core e1 with Γ) (check-core e2 with Γ))] [`(pair ,e1 ,e2) (match with [`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))] [_ #f])] [`(inl ,e) (match with [`(,t1 ⊕ ,t2) (check-core e t1 Γ)] [_ #f])] [`(inr ,e) (match with [`(,t1 ⊕ ,t2) (check-core e t2 Γ)] [_ #f])] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer-core e Γ) [`(,a1 ⊕ ,a2) (and (check-core e1 with (dict-set Γ x1 a1)) (check-core e2 with (dict-set Γ x2 a2)))] [_ #f])] ['nil (match with [`(List ,t) #t] [_ #f])] [`(cons ,f1 ,f2) (match with [`(List ,t) (and (check-core f1 t Γ) (check-core f2 `(List ,t) Γ))] [_ #f])] [`(λ (,x : ,t) ,e) (match with [`(,t1 → ,t2) (and (equiv-type t1 t Γ) (check-core e t2 (dict-set Γ x t1)))] [_ #f])] [_ (equiv-type (infer-core expr Γ) with Γ)])) ;; (infer Expr Table[Sym, Type]): Type (define (infer expr) (infer-core (desugar expr) #hash())) (define (infer-core expr Γ) (match expr ['sole 'Unit] [s #:when (string? s) 'Str] [n #:when (natural? n) 'Nat] [b #:when (boolean? b) 'Bool] [x #:when (dict-has-key? Γ x) (expand (dict-ref Γ x) Γ)] [`(type ,t1 ,t2 ,in) (infer-core in (dict-set Γ t1 t2))] [`(,e : ,t) (if (check-core e (expand t Γ) Γ) (expand t Γ) (err (format "annotated expression ~a is not of annotated type ~a" e t)))] [`(inc ,e) (if (check-core e 'Nat Γ) 'Nat (err (format "calling inc on incorrect type ~a" (infer-core e Γ))))] [`(if ,c ,e1 ,e2) (if (check-core c 'Bool Γ) (let ([t (infer-core e1 Γ)]) (if (check-core e2 t Γ) t (err (format "condition has branches of differing types ~a and ~a" t (infer-core e2 Γ))))) (err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))] [`(pair ,e1 ,e2) `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))] [`(car ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t1] [t (err (format "calling car on incorrect type ~a" t))])] [`(cdr ,e) (match (infer-core e Γ) [`(,t1 × ,t2) t2] [t (err (format "calling cdr on incorrect type ~a" t))])] [`(inl ,e) ; annotations necessary (match (infer-core e Γ) [`(,t1 ⊕ ,t2) `(,t1 ⊕ ,t2)] [t (err (format "calling inl on incorrect type ~a" t))])] [`(inr ,e) ; annotations necessary (match (infer-core e Γ) [`(,t1 ⊕ ,t2) `(,t1 ⊕ ,t2)] [t (err (format "calling inr on incorrect type ~a" t))])] [`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2)) (match (infer-core e Γ) [`(,a1 ⊕ ,a2) (let ([b1 (infer-core e1 (dict-set Γ x1 (expand a1 Γ)))] [b2 (infer-core e2 (dict-set Γ x2 (expand a2 Γ)))]) (if (equiv-type b1 b2 Γ) b1 (err (format "case ~a is not of consistent type!" `(case (,a1 ⊕ ,a2) b1 b2)))))] [t (err (format "calling case on incorrect type ~a" t))])] ['nil (err (format "unable to infer type of empty list!"))] [`(cons ,e1 ,e2) (let ([t (infer-core e1 Γ)]) (if (check-core e2 `(List ,t) Γ) `(List ,t) (err (format "list ~a is not of consistent type!" `(cons ,e1 ,e2)))))] [`(head ,e) (match (infer-core e Γ) [`(List ,t) t] [t (err (format "calling head on incorrect type ~a" t))])] [`(tail ,e) (match (infer-core e Γ) [`(List ,t) `(List ,t)] [t (err (format "calling tail on incorrect type ~a" t))])] [`(λ (,x : ,t) ,e) `(,(expand t Γ) → ,(infer-core e (dict-set Γ x t)))] [`(,e1 ,e2) (match (infer-core e1 Γ) [`(,t1 → ,t2) (if (check-core e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a" t1 e2)))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "inferring an unknown expression ~a" e))])) ;; Expands a type alias into weak-head normal form, for literal matching. ;; (expand Type Table[Id, Expr ⊕ Type]): Type (define (expand t Γ) (if (dict-has-key? Γ `(type ,t)) (expand (dict-ref Γ `(type ,t)) Γ) t)) ;; Checks if two types are equivalent up to α-conversion in context ;; (equiv-type Expr Expr Table[Sym Expr]): Bool (define (equiv-type e1 e2 Γ) (equiv-type-core e1 e2 Γ Γ)) (define (equiv-type-core e1 e2 Γ1 Γ2) (match* (e1 e2) ; bound identifiers: if a key exists in the context, look it up [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv-type-core (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv-type-core x1 (dict-ref Γ2 x2) Γ1 Γ2)] ; check for syntactic equivalence on remaining forms [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)])) ;; Checks if two terms are equivalent up to α-conversion in context ;; (equiv-term Expr Expr Table[Sym Expr]): Bool (define (equiv-term e1 e2 Γ) (equiv-term-core e1 e2 Γ Γ)) (define (equiv-term-core e1 e2 Γ1 Γ2) (match* (e1 e2) ; bound identifiers: if a key exists in the context, look it up [(x1 x2) #:when (dict-has-key? Γ1 x1) (equiv-term-core (dict-ref Γ1 x1) x2 Γ1 Γ2)] [(x1 x2) #:when (dict-has-key? Γ2 x2) (equiv-term-core x1 (dict-ref Γ2 x2) Γ1 Γ2)] ; function expressions: parameter names can be arbitrary [(`(λ (,x1 : ,t1) ,e1) `(λ (,x2 : ,t2) ,e2)) (let ([name gensym]) (and (equiv-term-core e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)) (equiv-term-core t1 t2 Γ1 Γ2)))] [(`(λ ,x1 ,e1) `(λ ,x2 ,e2)) (let ([name gensym]) (equiv-term-core e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))] ; check for syntactic equivalence on remaining forms [(`(,l1 ...) `(,l2 ...)) (foldl (λ (x1 x2 acc) (if (equiv-term-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)] [(v1 v2) (equal? v1 v2)]))