#lang racket (require "lib.rkt") ;; The Simply-Typed Lambda Calculus, with let sugar and some base types ;; (interpret Expr Table[Sym, Expr]): Value (define (interpret expr [Γ #hash()]) (interpret- (strip (desugar expr)) Γ)) (define (interpret- expr Γ) (match expr ['sole 'sole] [n #:when (natural? n) n] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(λ ,x ,e) `(λ ,x ,e ,Γ)] [`(,e1 ,e2) (match (interpret- e1 Γ) [`(λ ,x ,e1 ,env) (interpret- e1 (dict-set env x (interpret- e2 Γ)))] [e1 `(,e1 ,(interpret- e2 Γ))])] [e e])) ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with [Γ #hash()]) (check- (desugar expr) with Γ)) (define (check- expr with Γ) (match* (expr with) [('sole 'Unit) #t] [(n 'Nat) #:when (natural? n) #t] [(x _) #:when (dict-has-key? Γ x) (equal? (dict-ref Γ x) with)] [(`(λ ,x (: ,t) ,e) `(→ ,t1 ,t2)) (and (equal? t t1) (check- e t2 (dict-set Γ x t1)))] [(`(,e1 ,e2) t) (match (infer- e1 Γ) [`(→ ,t1 ,t2) (and (equal? t2 t) (equal? t1 (infer- e2 Γ)))] [t #f])] [(e t) #f])) ;; (infer Expr Table[Sym, Type]): Type (define (infer expr [Γ #hash()]) (infer- (desugar expr) Γ)) (define (infer- expr Γ) (match expr ['sole 'Unit] [n #:when (natural? n) 'Nat] [`(λ ,x (: ,t) ,e) `(→ ,t ,(infer- e (dict-set Γ x t)))] [`(,e1 ,e2) (match (infer- e1 Γ) [`(→ ,t1 ,t2) (if (check- e2 t1 Γ) t2 (err (format "inferred argument type ~a does not match arg ~a" t1 e2)))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "attempting to infer an unknown expression ~a" e))])) (provide interpret check infer) (require rackunit) (check-equal? (interpret '(λ x x)) '(λ x x #hash())) (check-equal? (interpret '((λ a a) (x y))) '(x y)) (check-equal? (interpret '((λ a (x y)) (λ z z))) '(x y)) (check-equal? (interpret '((λ a (a y)) x)) '(x y))