#lang racket (require "lib.rkt") ;; The Simply-Typed Lambda Calculus with higher-order *predicative* references ; Γ, x: τ₁ ⊢ e: τ₂ k ≥ max-level(Γ, τ₁, τ₂) ; --------------------------------------------- ; Γ ⊢ λx:τ₁.e : τ₁ →ᵏ τ₂ ; Γ ⊢ e₁: τ₁ →ᵏ τ₂ Γ ⊢ e₂: τ₁ ; -------------------------------- ; Γ ⊢ (e₁ e₂): τ₂ ; -------------------------- ; Nat::Type₀, Unit::Type₀ ; τ::Typeᵢ ; ------------- ; Ref τ :: Typeᵢ₊₁ ; τ₁::Typeᵢ, τ₂::Typeⱼ, k ≥ max-level(τ₁, τ₂) ; ----------------------------------------- ; τ₁ →ᵏ τ₂ :: Typeₖ (require (only-in "stlc-ref.rkt" interpret)) ;; (check Expr Type Table[Sym, Type]): Bool (define (check expr with [Γ #hash()]) (check- (desugar expr) with Γ)) (define (check- expr with Γ) ; (print (format "check: ~a" (fmt expr))) (match* (expr with) [('sole 'Unit) #t] [(n 'Nat) #:when (natural? n) #t] [(x _) #:when (dict-has-key? Γ x) (equal? (dict-ref Γ x) with)] [(`(new ,e) `(Ref ,t)) (check- e t Γ)] [(`(! ,e) t) (check- e `(Ref ,t) Γ)] [(`(set ,e1 ,e2) 'Unit) (match (infer- e1 Γ) [`(Ref ,t) (check- e2 t Γ)] [t #f])] [(`(λ ,x (: ,t) ,e) `(→ ,k ,t1 ,t2)) (and (equal? t t1) (>= k (max-level e (dict-set Γ x t1) t1 t2)) ; (KNOB) (check- e t2 (dict-set Γ x t1)))] [(`(,e1 ,e2) t) (match (infer- e1 Γ) [`(→ ,k ,t1 ,t2) (and (equal? t2 t) (equal? t1 (infer- e2 Γ)))] [t #f])] [(e t) #f])) ;; (infer Expr Table[Sym, Type]): Type (define (infer expr [Γ #hash()]) (infer- (desugar expr) Γ)) (define (infer- expr Γ) ; (print (format "infer: ~a" (fmt expr))) (match expr ['sole 'Unit] [n #:when (natural? n) 'Nat] [x #:when (dict-has-key? Γ x) (dict-ref Γ x)] [`(new ,e) `(Ref ,(infer- e Γ))] [`(! ,e) (match (infer- e Γ) [`(Ref ,t) t] ; Γ ⊢ e: Ref t → Γ ⊢ !e: t [t (err "attempting to deref term not of Ref type!")])] [`(set ,e1 ,e2) (match (infer- e1 Γ) [`(Ref ,t) ; Γ ⊢ e1: Ref t, Γ ⊢ e2: t (if (check- e2 t Γ) 'Unit ; ↝ Γ ⊢ e1 := e2: Unit (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type" e1 t e2 (infer- e2 Γ))))] [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])] [`(λ ,x (: ,t1) ,e) (let ([t2 (infer- e (dict-set Γ x t1))]) ; Γ, x: t1 ⊢ e: t2 (let ([k (max-level e (dict-set Γ x t1) t1 t2)]) ; k ≥ max-level(Γ, t1, t2) (KNOB) `(→ ,k ,t1 ,t2)))] ; ↝ Γ ⊢ λx: t1.e: t1 →k t2 [`(,e1 ,e2) (match (infer- e1 Γ) [`(→ ,k ,t1 ,t2) ; Γ ⊢ e1: t1 →k t2 (if (check- e2 t1 Γ) t2 ; Γ ⊢ e2: t1 ↝ Γ ⊢ (e1 e2): t2 (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer- e2 Γ))))] [t (err (format "expected → type on application body, got ~a" t))])] [e (err (format "attempting to infer an unknown expression ~a" e))])) ;; (max-level Table[Sym, Type] Expr Type Type): Natural (define (max-level e Γ t1 t2) (max (level-type t1) (level-type t2) (level-body e Γ))) ;; (level-type Type): Natural (define (level-type t) (match t ['Unit 0] ['Nat 0] [`(→ ,k ,t1 ,t2) (if (or (< k (level-type t1)) (< k (level-type t2))) (err (format "annotated level ~a is less than inferred levels of ~a and ~a!" k t1 t2)) k)] [`(Ref ,t) (+ 1 (level-type t))] ; (KNOB) [t (err (format "attempting to infer the level of unknown type ~a" t))])) ;; (level-body Expr Table[Sym, Type]): Natural (define (level-body e Γ) (match e ['sole 0] [n #:when (natural? n) 0] [x #:when (dict-has-key? Γ x) (level-type (dict-ref Γ x))] [`(new ,e) (level-body e Γ)] [`(! ,e) (level-body e Γ)] [`(set ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))] [`(λ ,x (: ,t) ,e) (level-body e (dict-set Γ x t))] ; todo: should be 0? [`(,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))] [e (err (format "attempting to infer the level of unknown expression ~a" e))])) ; simple diverging program in STLC-ref ; https://www.youtube.com/watch?v=XNgE8kBfSz8 #; (interpret ' (let id (: (→ 0 Nat Nat)) (λ x x) (let r (: (Ref (→ 0 Nat Nat))) (new id) (let f (: (→ 1 Nat Nat)) (λ x ((! r) x)) (set r f (f 0)))))) #; (print (fmt ' (let id (: (→ 0 Nat Nat)) (λ x x) (let r (: (Ref (→ 0 Nat Nat))) (new id) (let f (: (→ 1 Nat Nat)) (λ x ((! r) x)) (set r f (f 0))))))) (require rackunit) (check-exn exn:fail? (λ () (infer ' (let id (: (→ 0 Nat Nat)) (λ x x) (let r (: (Ref (→ 0 Nat Nat))) (new id) (let f (: (→ 1 Nat Nat)) (λ x ((! r) x)) (set r f (f 0)))))))) (check-eq? (infer ' (let id (: (→ 0 Nat Nat)) (λ x x) (let r (: (Ref (→ 0 Nat Nat))) (new id) (let f (: (→ 1 Nat Nat)) (λ x ((! r) x)) (f 0))))) 'Nat) (check-eq? (check ' (let id (: (→ 0 Nat Nat)) (λ x x) (let r (: (Ref (→ 0 Nat Nat))) (new id) (let f (: (→ 1 Nat Nat)) (λ x ((! r) x)) (f 0)))) 'Nat) #t)