summaryrefslogtreecommitdiff
path: root/mathematics
diff options
context:
space:
mode:
authorJJ2024-03-17 20:26:54 +0000
committerJJ2024-03-17 20:26:54 +0000
commit93689618c67e8d6f5db9702097d614d3fbd1ab57 (patch)
tree79213faaddf49eec52b60307ab5f492fabf64d78 /mathematics
parent32b9ed9190261086953545465634ae1954f59dd3 (diff)
meow
Diffstat (limited to 'mathematics')
-rw-r--r--mathematics/algebra.md7
1 files changed, 3 insertions, 4 deletions
diff --git a/mathematics/algebra.md b/mathematics/algebra.md
index 1da221b..0ba7847 100644
--- a/mathematics/algebra.md
+++ b/mathematics/algebra.md
@@ -5,8 +5,7 @@ title: mathematics/algebra
# algebra
-modern algebra is the study of **algebraic structures**: groups, rings, fields, modules, and the like.
-these structures are very abstract: and so results can be applied to a wide variety of situations.
+Modern algebra is the study of **algebraic structures**: groups, rings, fields, modules, and the like. These structures are very abstract: and so results can be applied to a wide variety of situations.
## structures
@@ -45,8 +44,8 @@ A **vector space** $V$ over a field $F$ of scalars is a set with a binary operat
- additive inverse: $∀v, ∃-v: v+(-v) = 0$
- commutativity: $∀u,v : u+v=v+u$
- $(V, )$ is a *scalar operation*:
- - scalar identity: $∃1 ∈ F : 1v = v1 = v$
- - commutativity: $∀a,b ∈ F, ∀v ∈ V (ab)v = a(bv)$
+ - scalar identity: $∃1 ∈ F, ∀v ∈ V : 1v = v1 = v$
+ - commutativity: $∀a,b ∈ F, ∀v ∈ V : (ab)v = a(bv)$
- The *distributive laws* hold:
- $∀a ∈ F, ∀u,v ∈ V : a(u+v) = au+av$
- $∀a,b ∈ F, ∀v ∈ V : (a+b)v = av + bv$