From de2f686c1688c03f61bae66424ca153213241642 Mon Sep 17 00:00:00 2001 From: JJ Date: Thu, 18 Jan 2024 13:46:20 -0800 Subject: meow --- mathematics/algebra.md | 75 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 75 insertions(+) (limited to 'mathematics/algebra.md') diff --git a/mathematics/algebra.md b/mathematics/algebra.md index 5838147..5434ff9 100644 --- a/mathematics/algebra.md +++ b/mathematics/algebra.md @@ -4,3 +4,78 @@ title: mathematics/algebra --- # algebra + +modern algebra is the study of **algebraic structures**: groups, rings, fields, modules, vector spaces, lattices, and the like. + +these structures are very general: and so results from abstract algebra can be applied to a wide variety of situations. + +## structures + +An **algebraic structure** is a set with a collection of *operations* and a finite set of *axioms* those operations must satisfy. + +A **group** $G$ is a set with a single binary operation ⋆ satisfying the following axioms: +- associativity: $∀a,b,c : (a⋆b)⋆c = a⋆(b⋆c) +- identity: $∃e, ∀a : e⋆a = a⋆e = a$ +- inverse: $∀a, ∃a^{-1} : a⋆a^{-1} = e$ +- An Abelian or **commutative group** satisfies an additional axiom: + - commutativity: $∀a,b : a⋆b=b⋆a$ + +A **monoid** is a group without an inverse operation. + +A **ring** $R$ is a set with two binary operations + and × satisfying the following axioms: +- $(R, +)$ is a *commutative group*: + - associativity: $∀a,b,c : (a+b)+c = a+(b+c) + - additive identity: $∃0, ∀a : 0+a = a+0 = a$ + - additive inverse: $∀a, ∃-a : a+(-a) = 0$ + - commutativity: $∀a,b : a+b=b+a$ +- $(R, ×)$ is a *monoid* + - associativity: $∀a,b,c : (a×b)×c = a×(b×c) + - multiplicative identity: $∃1, ∀a : 1×a = a×1 = a$ +- The *distributive laws* hold for + and ×: + - $∀a,b,c : (a+b) × c = (a×c)+(b×c)$ + - $∀a,b,c : a × (b+c) = (a×b) + (a×c)$ +- An Abelian or **commutative ring** satisfies an additional axiom: + - commutativity (of ×): $∀a,b : a×b=b×a$ + +A **field** is a *commutative ring* where $0 ≠ 1$ and all elements sans $0$ have an inverse $a^{-1}$ under multiplication. + +A **vector space** $V$ over a field $F$ of scalars is a set with a binary operation + and a binary function satisfying the following axioms: +- $(V, +)$ is a *commutative group*: + - associativity: $∀u,v,w : (u+v)+w = u+(v+w) + - additive identity: $∃0, ∀v: 0+v = v+0 = v$ + - additive inverse: $∀v, ∃-v: v+(-v) = 0$ + - commutativity: $∀u,v : u+v=v+u$ +- $(V, )$ is a *scalar operation*: + - scalar identity: $∃1 ∈ F : 1v = v1 = v$ + - commutativity: $∀a,b ∈ F, ∀v ∈ V (ab)v = a(bv)$ +- The *distributive laws* hold: + - $∀a ∈ F, ∀u,v ∈ V : a(u+v) = au+av$ + - $∀a,b ∈ F, ∀v ∈ V : (a+b)v = av + bv$ + +A **module** $M$ is a generalization of a *vector space* to function over a ring $R$ instead of a field. + +A **lattice** $L$ is a set with two binary operations ∧ and ∨ satisfying the following axioms: +- commutativity: + - $∀a,b : a ∧ b = b ∧ a$ + - $∀a,b : a ∨ b = b ∨ a$ +- associativity: + - $∀a,b,c : a ∧ (b ∧ c) = (a ∧ b) ∧ c$ + - $∀a,b,c : a ∨ (b ∨ c) = (a ∨ b) ∨ c$ +- absorption: + - $∀a,b : a ∧ (a ∨ b) = a$ + - $∀a,b : a ∨ (a ∧ b) = a$ +- idempotence: + - $∀a : a ∧ a = a$ + - $∀a : a ∨ a = a$ + +## group theory + +## ring theory + +## galois theory + +## linear algebra + +## order theory + +a lattice may alternatively be defined as... -- cgit v1.2.3-70-g09d2