aboutsummaryrefslogtreecommitdiff
path: root/entries/jj/tm/fib.txt
diff options
context:
space:
mode:
Diffstat (limited to 'entries/jj/tm/fib.txt')
-rw-r--r--entries/jj/tm/fib.txt144
1 files changed, 0 insertions, 144 deletions
diff --git a/entries/jj/tm/fib.txt b/entries/jj/tm/fib.txt
deleted file mode 100644
index 402db15..0000000
--- a/entries/jj/tm/fib.txt
+++ /dev/null
@@ -1,144 +0,0 @@
-The following is a low-level description of a Turing machine that will write
-the Fibonacci sequence (represented in binary, separated by $) without halting.
-
-A Turing machine is a 7-tuple T = (Q,Σ,Γ,δ,qI,qA,qR) where:
-- Q is the set of states; non-empty and finite
-- Σ is the input alphabet; non-empty and finite
-- Γ is the tape alphabet; non-empty and finite
-- δ is the transition function: δ(Q, Γ) -> (Q, Γ, {L, R})
-- qI ∈ Q is the initial state
-- qA ∈ Q is the accept state
-- qR ∈ Q is the reject state
-
-- Q: {
- ca, cb, cc, cd, ce, cf, cg, ch, ci,
- sa, sb, sc, sd,
- aa, ab, ac,
- aaa, aab, aac, aad, aae, aaf,
- aba, abb, abc, abd, abe, abf,
- ba, bb, bc,
- baa, bab, bac, bad, bae, baf,
- bba, bbb, bbc, bbd, bbe, bbf,
- za, zb, zc, zd
-}
-- Σ: not relevant as we entirely disregard the input to begin with.
-- Γ: {_, $, X, 0, 1, 0*, 1*} (_ means the blank symbol)
-- δ: described below. a note on syntax:
- - no entry in the output parameter means do not write a character to the tape.
- - similarly, no entry in the position parameter means do not move the tape head.
- - numerous "possible" transition functions are not stated. those are thought by the author to be inaccessible in normal operation of this machine (and if they are, it is probably a bug).
-- qI: the initial state is ca.
-- qA: the machine does not accept.
-- qR: the machine does not reject.
-
-δ(ca, Γ) -> (cb, $, R)
-δ(cb, Γ) -> (cc, 0, R)
-δ(cc, Γ) -> (cd, $, R)
-δ(cd, Γ) -> (ce, 1*, R)
-δ(ce, Γ) -> (cf, $, R)
-δ(cf, Γ) -> (cg, 1, R)
-δ(cg, Γ) -> (ch, $, R)
-δ(ch, Γ \ _) -> (ci, _, R)
-δ(ch, _) -> (sa, , )
-
-δ(sa, {_,X}) -> (sa, , L)
-δ(sa, $) -> (sb, , L)
-δ(sb, {0*,1*}) -> (sb, , L)
-δ(sb, 0) -> (sc, 0*, R)
-δ(sb, 1) -> (sc, 1*, R)
-δ(sb, $) -> (sd, , R)
-δ(sc, Γ \ _) -> (sc, , R)
-δ(sc, _) -> (sa, X, L)
-δ(sd, {$,X}) -> (sd, , R)
-δ(sd, 0*) -> (sd, 0, R)
-δ(sd, 1*) -> (sd, 1, R)
-δ(sd, _) -> (aa, , L)
-
-δ(aa, {X,0,1}) -> (aa, , L)
-δ(aa, $) -> (ab, , L)
-δ(ab, {0*,1*}) -> (ab, , L)
-δ(ab, 0) -> (aaa, 0*, L)
-δ(ab, 1) -> (aba, 1*, L)
-δ(ab, $) -> (ac, , R)
-δ(ac, Γ \ _) -> (ac, , R)
-δ(ac, _) -> (sa, $, R)
-
-δ(aaa, {0,1}) -> (aaa, , L)
-δ(aaa, $) -> (aab, , L)
-δ(aab, 0*) -> (aac, 0, R)
-δ(aac, Γ \ _) -> (aac, , R)
-δ(aac, _) -> (aad, , L)
-δ(aad, {0,1}) -> (aad, , L)
-δ(aad, X) -> (aa, 0, L)
-δ(aab, 1*) -> (aae, 1, R)
-δ(aae, Γ \ _) -> (aae, , R)
-δ(aae, _) -> (aaf, , L)
-δ(aaf, {0,1}) -> (aaf, , L)
-δ(aaf, X) -> (aa, 1, L)
-δ(aab, {0,1}) -> (aab, , L)
-
-δ(aba, {0,1}) -> (aba, , L)
-δ(aba, $) -> (abb, , L)
-δ(abb, 0*) -> (abc, 0, R)
-δ(abc, Γ \ _) -> (abc, , R)
-δ(abc, _) -> (abd, , L)
-δ(abd, {0,1}) -> (abd, , L)
-δ(abd, X) -> (aa, 1, L)
-δ(abb, 1*) -> (abe, 1, R)
-δ(abe, Γ \ _) -> (abe, , R)
-δ(abe, _) -> (abf, , L)
-δ(abf, {0,1}) -> (abf, , L)
-δ(abf, X) -> (ba, 0, L)
-δ(abb, $) -> (abc, , R)
-δ(abb, {0,1}) -> (abb, , L)
-
-δ(ba, {X,0,1}) -> (ba, , L)
-δ(ba, $) -> (bb, , L)
-δ(bb, {0*,1*}) -> (bb, , L)
-δ(bb, 0) -> (baa, 0*, L)
-δ(bb, 1) -> (bba, 1*, L)
-δ(bb, $) -> (bc, , R)
-δ(bc, Γ \ _) -> (bc, , R)
-δ(bc, _) -> (za, , L)
-
-δ(baa, {0,1}) -> (baa, , L)
-δ(baa, $) -> (bab, , L)
-δ(bab, 0*) -> (bac, 0, R)
-δ(bac, Γ \ _) -> (bac, , R)
-δ(bac, _) -> (bad, , L)
-δ(bad, {0,1}) -> (bad, , L)
-δ(bad, X) -> (aa, 1, L)
-δ(bab, 1*) -> (bae, 1, R)
-δ(bae, Γ \ _) -> (bae, , R)
-δ(bae, _) -> (baf, , L)
-δ(baf, {0,1}) -> (baf, , L)
-δ(baf, X) -> (ba, 0, L)
-δ(bab, {0,1}) -> (bab, , L)
-
-δ(bba, {0,1}) -> (bba, , L)
-δ(bba, $) -> (bbb, , L)
-δ(bbb, 0*) -> (bbc, 0, R)
-δ(bbc, Γ \ _) -> (bbc, , R)
-δ(bbc, _) -> (bbd, , L)
-δ(bbd, {0,1}) -> (bbd, , L)
-δ(bbd, X) -> (ba, 0, L)
-δ(bbb, 1*) -> (bbe, 1, R)
-δ(bbe, Γ \ _) -> (bbe, , R)
-δ(bbe, _) -> (bbf, , L)
-δ(bbf, {0,1}) -> (bbf, , L)
-δ(bbf, X) -> (ba, 1, L)
-δ(bbb, $) -> (bbc, , R)
-δ(bbb, {0,1}) -> (bbb, , L)
-
-δ(za, {0,1}) -> (za, , L)
-δ(za, $) -> (zb, , R)
-
-δ(zb, 0) -> (zc, 1, R)
-δ(zb, 1) -> (zb, 1, R)
-δ(zb, _) -> (zd, 1, R)
-
-δ(zc, 0) -> (zc, 0, R)
-δ(zc, 1) -> (zb, 0, R)
-δ(zc, _) -> (zd, 0, R)
-
-δ(zd, _) -> (sa, $, R)