use crate::{Range, Rope, Selection, State, Tendril};
use std::borrow::Cow;
use std::convert::TryFrom;
/// (from, to, replacement)
pub type Change = (usize, usize, Option<Tendril>);
// TODO: pub(crate)
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Operation {
/// Move cursor by n characters.
Retain(usize),
/// Delete n characters.
Delete(usize),
/// Insert text at position.
Insert(Tendril),
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Assoc {
Before,
After,
}
// ChangeSpec = Change | ChangeSet | Vec<Change>
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ChangeSet {
pub(crate) changes: Vec<Operation>,
/// The required document length. Will refuse to apply changes unless it matches.
len: usize,
}
impl ChangeSet {
#[must_use]
pub fn new(doc: &Rope) -> Self {
let len = doc.len_chars();
Self {
changes: vec![Operation::Retain(len)],
len,
}
}
// TODO: from iter
//
#[doc(hidden)] // used by lsp to convert to LSP changes
pub fn changes(&self) -> &[Operation] {
&self.changes
}
#[must_use]
fn len_after(&self) -> usize {
use Operation::*;
let mut len = 0;
for change in &self.changes {
match change {
Retain(i) => len += i,
Insert(s) => len += s.chars().count(),
Delete(_) => (),
}
}
len
}
/// Combine two changesets together.
/// In other words, If `this` goes `docA` → `docB` and `other` represents `docB` → `docC`, the
/// returned value will represent the change `docA` → `docC`.
pub fn compose(self, other: ChangeSet) -> Result<Self, ()> {
debug_assert!(self.len_after() == other.len);
let len = self.changes.len();
let mut changes_a = self.changes.into_iter();
let mut changes_b = other.changes.into_iter();
let mut head_a = changes_a.next();
let mut head_b = changes_b.next();
let mut changes: Vec<Operation> = Vec::with_capacity(len); // TODO: max(a, b), shrink_to_fit() afterwards
loop {
use std::cmp::Ordering;
use Operation::*;
match (head_a, head_b) {
// we are done
(None, None) => {
break;
}
// deletion in A
(Some(change @ Delete(..)), b) => {
changes.push(change);
head_a = changes_a.next();
head_b = b;
}
// insertion in B
(a, Some(change @ Insert(..))) => {
changes.push(change);
head_a = a;
head_b = changes_b.next();
}
(None, _) | (_, None) => return Err(()),
(Some(Retain(i)), Some(Retain(j))) => match i.cmp(&j) {
Ordering::Less => {
changes.push(Retain(i));
head_a = changes_a.next();
head_b = Some(Retain(j - i));
}
Ordering::Equal => {
changes.push(Retain(i));
head_a = changes_a.next();
head_b = changes_b.next();
}
Ordering::Greater => {
changes.push(Retain(j));
head_a = Some(Retain(i - j));
head_b = changes_b.next();
}
},
(Some(Insert(mut s)), Some(Delete(j))) => {
let len = s.chars().count();
match len.cmp(&j) {
Ordering::Less => {
head_a = changes_a.next();
head_b = Some(Delete(j - len));
}
Ordering::Equal => {
head_a = changes_a.next();
head_b = changes_b.next();
}
Ordering::Greater => {
// figure out the byte index of the truncated string end
let (pos, _) = s.char_indices().nth(len - j).unwrap();
s.pop_front(s.len() as u32 - pos as u32);
head_a = Some(Insert(s));
head_b = changes_b.next();
}
}
}
(Some(Insert(mut s)), Some(Retain(j))) => {
let len = s.chars().count();
match len.cmp(&j) {
Ordering::Less => {
changes.push(Insert(s));
head_a = changes_a.next();
head_b = Some(Retain(j - len));
}
Ordering::Equal => {
changes.push(Insert(s));
head_a = changes_a.next();
head_b = changes_b.next();
}
Ordering::Greater => {
// figure out the byte index of the truncated string end
let (pos, _) = s.char_indices().nth(j).unwrap();
let pos = pos as u32;
changes.push(Insert(s.subtendril(0, pos)));
head_a = Some(Insert(s.subtendril(pos, s.len() as u32 - pos)));
head_b = changes_b.next();
}
}
}
(Some(Retain(i)), Some(Delete(j))) => match i.cmp(&j) {
Ordering::Less => {
changes.push(Delete(i));
head_a = changes_a.next();
head_b = Some(Delete(j - i));
}
Ordering::Equal => {
changes.push(Delete(j));
head_a = changes_a.next();
head_b = changes_b.next();
}
Ordering::Greater => {
changes.push(Delete(j));
head_a = Some(Retain(i - j));
head_b = changes_b.next();
}
},
};
}
Ok(Self {
len: self.len,
changes,
})
}
/// Given another change set starting in the same document, maps this
/// change set over the other, producing a new change set that can be
/// applied to the document produced by applying `other`. When
/// `before` is `true`, order changes as if `this` comes before
/// `other`, otherwise (the default) treat `other` as coming first.
///
/// Given two changes `A` and `B`, `A.compose(B.map(A))` and
/// `B.compose(A.map(B, true))` will produce the same document. This
/// provides a basic form of [operational
/// transformation](https://en.wikipedia.org/wiki/Operational_transformation),
/// and can be used for collaborative editing.
pub fn map(self, _other: Self) -> Self {
unimplemented!()
}
/// Returns a new changeset that reverts this one. Useful for `undo` implementation.
/// The document parameter expects the original document before this change was applied.
pub fn invert(&self, original_doc: &Rope) -> Self {
assert!(original_doc.len_chars() == self.len);
let mut changes = Vec::with_capacity(self.changes.len());
let mut pos = 0;
let mut len = 0;
for change in &self.changes {
use Operation::*;
match change {
Retain(n) => {
changes.push(Retain(*n));
pos += n;
len += n;
}
Delete(n) => {
let text = Cow::from(original_doc.slice(pos..pos + *n));
changes.push(Insert(Tendril::from_slice(&text)));
pos += n;
}
Insert(s) => {
let chars = s.chars().count();
changes.push(Delete(chars));
len += chars;
}
}
}
Self { changes, len }
}
/// Returns true if applied successfully.
pub fn apply(&self, text: &mut Rope) -> bool {
if text.len_chars() != self.len {
return false;
}
let mut pos = 0;
for change in &self.changes {
use Operation::*;
match change {
Retain(n) => {
pos += n;
}
Delete(n) => {
text.remove(pos..pos + *n);
// pos += n;
}
Insert(s) => {
text.insert(pos, s);
pos += s.chars().count();
}
}
}
true
}
/// `true` when the set is empty.
#[inline]
pub fn is_empty(&self) -> bool {
let len = self.changes.len();
len == 0 || (len == 1 && self.changes[0] == Operation::Retain(self.len))
}
/// Map a position through the changes.
///
/// `assoc` indicates which size to associate the position with. `Before` will keep the
/// position close to the character before, and will place it before insertions over that
/// range, or at that point. `After` will move it forward, placing it at the end of such
/// insertions.
pub fn map_pos(&self, pos: usize, assoc: Assoc) -> usize {
use Operation::*;
let mut old_pos = 0;
let mut new_pos = 0;
let mut iter = self.changes.iter().peekable();
while let Some(change) = iter.next() {
let len = match change {
Delete(i) | Retain(i) => *i,
Insert(_) => 0,
};
let old_end = old_pos + len;
match change {
Retain(_) => {
if old_end > pos {
return new_pos + (pos - old_pos);
}
new_pos += len;
}
Delete(_) => {
// a subsequent ins means a replace, consume it
let ins = if let Some(Insert(s)) = iter.peek() {
iter.next();
s.chars().count()
} else {
0
};
// in range
if old_end > pos {
// at point or tracking before
if pos == old_pos || assoc == Assoc::Before {
return new_pos;
} else {
// place to end of delete
return new_pos + ins;
}
}
new_pos += ins;
}
Insert(s) => {
let ins = s.chars().count();
// at insert point
if old_pos == pos {
// return position before inserted text
if assoc == Assoc::Before {
return new_pos;
} else {
// after text
return new_pos + ins;
}
}
new_pos += ins;
}
}
old_pos = old_end;
}
if pos > old_pos {
panic!(
"Position {} is out of range for changeset len {}!",
pos, old_pos
)
}
new_pos
}
}
/// Transaction represents a single undoable unit of changes. Several changes can be grouped into
/// a single transaction.
#[derive(Debug, Clone)]
pub struct Transaction {
/// Changes made to the buffer.
pub(crate) changes: ChangeSet,
/// When set, explicitly updates the selection.
selection: Option<Selection>,
// effects, annotations
// scroll_into_view
}
impl Transaction {
/// Create a new, empty transaction.
pub fn new(state: &mut State) -> Self {
Self {
changes: ChangeSet::new(&state.doc),
selection: None,
}
}
pub fn changes(&self) -> &ChangeSet {
&self.changes
}
/// Returns true if applied successfully.
pub fn apply(&self, state: &mut State) -> bool {
if !self.changes.is_empty() {
// apply changes to the document
if !self.changes.apply(&mut state.doc) {
return false;
}
}
// TODO: also avoid mapping the selection if not necessary
// update the selection: either take the selection specified in the transaction, or map the
// current selection through changes.
state.selection = self
.selection
.clone()
.unwrap_or_else(|| state.selection.clone().map(&self.changes));
true
}
/// Generate a transaction that reverts this one.
pub fn invert(&self, original: &State) -> Self {
let changes = self.changes.invert(original.doc());
// Store the current cursor position
let selection = original.selection.clone();
Self {
changes,
selection: Some(selection),
}
}
pub fn with_selection(mut self, selection: Selection) -> Self {
self.selection = Some(selection);
self
}
/// Generate a transaction from a set of changes.
pub fn change<I>(state: &State, changes: I) -> Self
where
I: IntoIterator<Item = Change> + ExactSizeIterator,
{
let len = state.doc.len_chars();
let mut acc = Vec::with_capacity(2 * changes.len() + 1);
// TODO: verify ranges are ordered and not overlapping or change will panic.
let mut last = 0;
for (from, to, tendril) in changes {
// Retain from last "to" to current "from"
acc.push(Operation::Retain(from - last));
let span = to - from;
match tendril {
Some(text) => {
if span > 0 {
acc.push(Operation::Delete(span));
}
acc.push(Operation::Insert(text));
}
None if span > 0 => acc.push(Operation::Delete(span)),
// empty delete is useless
None => (),
}
last = to;
}
let span = len - last;
if span > 0 {
acc.push(Operation::Retain(span));
}
Self::from(ChangeSet { changes: acc, len })
}
/// Generate a transaction with a change per selection range.
pub fn change_by_selection<F>(state: &State, f: F) -> Self
where
F: FnMut(&Range) -> Change,
{
Self::change(state, state.selection.ranges().iter().map(f))
}
/// Insert text at each selection head.
pub fn insert(state: &State, text: Tendril) -> Self {
Self::change_by_selection(state, |range| (range.head, range.head, Some(text.clone())))
}
}
impl From<ChangeSet> for Transaction {
fn from(changes: ChangeSet) -> Self {
Self {
changes,
selection: None,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn composition() {
use Operation::*;
let a = ChangeSet {
changes: vec![
Retain(5),
Insert(" test!".into()),
Retain(1),
Delete(2),
Insert("abc".into()),
],
len: 8,
};
let b = ChangeSet {
changes: vec![Delete(10), Insert("world".into()), Retain(5)],
len: 15,
};
let mut text = Rope::from("hello xz");
// should probably return cloned text
let composed = a.compose(b).unwrap();
assert_eq!(composed.len, 8);
assert!(composed.apply(&mut text));
assert_eq!(text, "world! abc");
}
#[test]
fn invert() {
use Operation::*;
let changes = ChangeSet {
changes: vec![Retain(4), Delete(5), Insert("test".into()), Retain(3)],
len: 12,
};
let doc = Rope::from("世界3 hello xz");
let revert = changes.invert(&doc);
let mut doc2 = doc.clone();
changes.apply(&mut doc2);
// a revert is different
assert_ne!(changes, revert);
assert_ne!(doc, doc2);
// but inverting a revert will give us the original
assert_eq!(changes, revert.invert(&doc2));
// applying a revert gives us back the original
revert.apply(&mut doc2);
assert_eq!(doc, doc2);
}
#[test]
fn map_pos() {
use Operation::*;
// maps inserts
let cs = ChangeSet {
changes: vec![Retain(4), Insert("!!".into()), Retain(4)],
len: 8,
};
assert_eq!(cs.map_pos(0, Assoc::Before), 0); // before insert region
assert_eq!(cs.map_pos(4, Assoc::Before), 4); // at insert, track before
assert_eq!(cs.map_pos(4, Assoc::After), 6); // at insert, track after
assert_eq!(cs.map_pos(5, Assoc::Before), 7); // after insert region
// maps deletes
let cs = ChangeSet {
changes: vec![Retain(4), Delete(4), Retain(4)],
len: 12,
};
assert_eq!(cs.map_pos(0, Assoc::Before), 0); // at start
assert_eq!(cs.map_pos(4, Assoc::Before), 4); // before a delete
assert_eq!(cs.map_pos(5, Assoc::Before), 4); // inside a delete
assert_eq!(cs.map_pos(5, Assoc::After), 4); // inside a delete
// TODO: delete tracking
// stays inbetween replacements
let cs = ChangeSet {
changes: vec![
Delete(2),
Insert("ab".into()),
Delete(2),
Insert("cd".into()),
],
len: 4,
};
assert_eq!(cs.map_pos(2, Assoc::Before), 2);
assert_eq!(cs.map_pos(2, Assoc::After), 2);
}
#[test]
fn transaction_change() {
let mut state = State::new("hello world!\ntest 123".into());
let transaction = Transaction::change(
&state,
// (1, 1, None) is a useless 0-width delete
vec![(1, 1, None), (6, 11, Some("void".into())), (12, 17, None)].into_iter(),
);
transaction.apply(&mut state);
assert_eq!(state.doc, Rope::from_str("hello void! 123"));
}
}