diff options
Diffstat (limited to 'helix-core/src/graphemes.rs')
-rw-r--r-- | helix-core/src/graphemes.rs | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/helix-core/src/graphemes.rs b/helix-core/src/graphemes.rs new file mode 100644 index 00000000..ec4e9d24 --- /dev/null +++ b/helix-core/src/graphemes.rs @@ -0,0 +1,213 @@ +// Based on https://github.com/cessen/led/blob/c4fa72405f510b7fd16052f90a598c429b3104a6/src/graphemes.rs +use ropey::{iter::Chunks, str_utils::byte_to_char_idx, RopeSlice}; +use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete}; +use unicode_width::UnicodeWidthStr; + +pub fn grapheme_width(g: &str) -> usize { + if g.as_bytes()[0] <= 127 { + // Fast-path ascii. + // Point 1: theoretically, ascii control characters should have zero + // width, but in our case we actually want them to have width: if they + // show up in text, we want to treat them as textual elements that can + // be editied. So we can get away with making all ascii single width + // here. + // Point 2: we're only examining the first codepoint here, which means + // we're ignoring graphemes formed with combining characters. However, + // if it starts with ascii, it's going to be a single-width grapeheme + // regardless, so, again, we can get away with that here. + // Point 3: we're only examining the first _byte_. But for utf8, when + // checking for ascii range values only, that works. + 1 + } else { + // We use max(1) here because all grapeheme clusters--even illformed + // ones--should have at least some width so they can be edited + // properly. + UnicodeWidthStr::width(g).max(1) + } +} + +pub fn nth_prev_grapheme_boundary(slice: &RopeSlice, char_idx: usize, n: usize) -> usize { + // TODO: implement this more efficiently. This has to do a lot of + // re-scanning of rope chunks. Probably move the main implementation here, + // and have prev_grapheme_boundary call this instead. + let mut char_idx = char_idx; + for _ in 0..n { + char_idx = prev_grapheme_boundary(slice, char_idx); + } + char_idx +} + +/// Finds the previous grapheme boundary before the given char position. +pub fn prev_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> usize { + // Bounds check + debug_assert!(char_idx <= slice.len_chars()); + + // We work with bytes for this, so convert. + let byte_idx = slice.char_to_byte(char_idx); + + // Get the chunk with our byte index in it. + let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx); + + // Set up the grapheme cursor. + let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); + + // Find the previous grapheme cluster boundary. + loop { + match gc.prev_boundary(chunk, chunk_byte_idx) { + Ok(None) => return 0, + Ok(Some(n)) => { + let tmp = byte_to_char_idx(chunk, n - chunk_byte_idx); + return chunk_char_idx + tmp; + } + Err(GraphemeIncomplete::PrevChunk) => { + let (a, b, c, _) = slice.chunk_at_byte(chunk_byte_idx - 1); + chunk = a; + chunk_byte_idx = b; + chunk_char_idx = c; + } + Err(GraphemeIncomplete::PreContext(n)) => { + let ctx_chunk = slice.chunk_at_byte(n - 1).0; + gc.provide_context(ctx_chunk, n - ctx_chunk.len()); + } + _ => unreachable!(), + } + } +} + +pub fn nth_next_grapheme_boundary(slice: &RopeSlice, char_idx: usize, n: usize) -> usize { + // TODO: implement this more efficiently. This has to do a lot of + // re-scanning of rope chunks. Probably move the main implementation here, + // and have next_grapheme_boundary call this instead. + let mut char_idx = char_idx; + for _ in 0..n { + char_idx = next_grapheme_boundary(slice, char_idx); + } + char_idx +} + +/// Finds the next grapheme boundary after the given char position. +pub fn next_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> usize { + // Bounds check + debug_assert!(char_idx <= slice.len_chars()); + + // We work with bytes for this, so convert. + let byte_idx = slice.char_to_byte(char_idx); + + // Get the chunk with our byte index in it. + let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx); + + // Set up the grapheme cursor. + let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); + + // Find the next grapheme cluster boundary. + loop { + match gc.next_boundary(chunk, chunk_byte_idx) { + Ok(None) => return slice.len_chars(), + Ok(Some(n)) => { + let tmp = byte_to_char_idx(chunk, n - chunk_byte_idx); + return chunk_char_idx + tmp; + } + Err(GraphemeIncomplete::NextChunk) => { + chunk_byte_idx += chunk.len(); + let (a, _, c, _) = slice.chunk_at_byte(chunk_byte_idx); + chunk = a; + chunk_char_idx = c; + } + Err(GraphemeIncomplete::PreContext(n)) => { + let ctx_chunk = slice.chunk_at_byte(n - 1).0; + gc.provide_context(ctx_chunk, n - ctx_chunk.len()); + } + _ => unreachable!(), + } + } +} + +/// Returns whether the given char position is a grapheme boundary. +pub fn is_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> bool { + // Bounds check + debug_assert!(char_idx <= slice.len_chars()); + + // We work with bytes for this, so convert. + let byte_idx = slice.char_to_byte(char_idx); + + // Get the chunk with our byte index in it. + let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx); + + // Set up the grapheme cursor. + let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); + + // Determine if the given position is a grapheme cluster boundary. + loop { + match gc.is_boundary(chunk, chunk_byte_idx) { + Ok(n) => return n, + Err(GraphemeIncomplete::PreContext(n)) => { + let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1); + gc.provide_context(ctx_chunk, ctx_byte_start); + } + _ => unreachable!(), + } + } +} + +/// An iterator over the graphemes of a RopeSlice. +#[derive(Clone)] +pub struct RopeGraphemes<'a> { + text: RopeSlice<'a>, + chunks: Chunks<'a>, + cur_chunk: &'a str, + cur_chunk_start: usize, + cursor: GraphemeCursor, +} + +impl<'a> RopeGraphemes<'a> { + pub fn new<'b>(slice: &RopeSlice<'b>) -> RopeGraphemes<'b> { + let mut chunks = slice.chunks(); + let first_chunk = chunks.next().unwrap_or(""); + RopeGraphemes { + text: *slice, + chunks: chunks, + cur_chunk: first_chunk, + cur_chunk_start: 0, + cursor: GraphemeCursor::new(0, slice.len_bytes(), true), + } + } +} + +impl<'a> Iterator for RopeGraphemes<'a> { + type Item = RopeSlice<'a>; + + fn next(&mut self) -> Option<RopeSlice<'a>> { + let a = self.cursor.cur_cursor(); + let b; + loop { + match self + .cursor + .next_boundary(self.cur_chunk, self.cur_chunk_start) + { + Ok(None) => { + return None; + } + Ok(Some(n)) => { + b = n; + break; + } + Err(GraphemeIncomplete::NextChunk) => { + self.cur_chunk_start += self.cur_chunk.len(); + self.cur_chunk = self.chunks.next().unwrap_or(""); + } + _ => unreachable!(), + } + } + + if a < self.cur_chunk_start { + let a_char = self.text.byte_to_char(a); + let b_char = self.text.byte_to_char(b); + + Some(self.text.slice(a_char..b_char)) + } else { + let a2 = a - self.cur_chunk_start; + let b2 = b - self.cur_chunk_start; + Some((&self.cur_chunk[a2..b2]).into()) + } + } +} |