aboutsummaryrefslogtreecommitdiff
path: root/helix-core/src/selection.rs
diff options
context:
space:
mode:
Diffstat (limited to 'helix-core/src/selection.rs')
-rw-r--r--helix-core/src/selection.rs182
1 files changed, 126 insertions, 56 deletions
diff --git a/helix-core/src/selection.rs b/helix-core/src/selection.rs
index 370a1f6e..35ad9845 100644
--- a/helix-core/src/selection.rs
+++ b/helix-core/src/selection.rs
@@ -1,5 +1,5 @@
-//! Selections are the primary editing construct. Even a single cursor is defined as an empty
-//! single selection range.
+//! Selections are the primary editing construct. Even a single cursor is
+//! defined as a single empty or 1-wide selection range.
//!
//! All positioning is done via `char` offsets into the buffer.
use crate::{Assoc, ChangeSet, Rope, RopeSlice};
@@ -15,16 +15,39 @@ fn abs_difference(x: usize, y: usize) -> usize {
}
}
-/// A single selection range. Anchor-inclusive, head-exclusive.
+/// A single selection range.
+///
+/// The range consists of an "anchor" and "head" position in
+/// the text. The head is the part that the user moves when
+/// directly extending the selection. The head and anchor
+/// can be in any order: either can precede or follow the
+/// other in the text, and they can share the same position
+/// for a zero-width range.
+///
+/// Below are some example `Range` configurations to better
+/// illustrate. The anchor and head indices are show as
+/// "(anchor, head)", followed by example text with "[" and "]"
+/// inserted to visually represent the anchor and head positions:
+///
+/// - (0, 3): [Som]e text.
+/// - (3, 0): ]Som[e text.
+/// - (2, 7): So[me te]xt.
+/// - (1, 1): S[]ome text.
+///
+/// Ranges are considered to be inclusive on the left and
+/// exclusive on the right, regardless of anchor-head ordering.
+/// This means, for example, that non-zero-width ranges that
+/// are directly adjecent, sharing an edge, do not overlap.
+/// However, a zero-width range will overlap with the shared
+/// left-edge of another range.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Range {
- // TODO: optimize into u32
/// The anchor of the range: the side that doesn't move when extending.
pub anchor: usize,
/// The head of the range, moved when extending.
pub head: usize,
pub horiz: Option<u32>,
-} // TODO: might be cheaper to store normalized as from/to and an inverted flag
+}
impl Range {
pub fn new(anchor: usize, head: usize) -> Self {
@@ -62,25 +85,14 @@ impl Range {
/// Check two ranges for overlap.
#[must_use]
pub fn overlaps(&self, other: &Self) -> bool {
- // cursor overlap is checked differently
- if self.is_empty() {
- let pos = self.head;
- pos >= other.from() && other.to() >= pos
- } else {
- self.to() > other.from() && other.to() > self.from()
- }
+ // To my eye, it's non-obvious why this works, but I arrived
+ // at it after transforming the slower version that explicitly
+ // enumerated more cases. The unit tests are thorough.
+ self.from() == other.from() || (self.to() > other.from() && other.to() > self.from())
}
pub fn contains(&self, pos: usize) -> bool {
- if self.is_empty() {
- return false;
- }
-
- if self.anchor < self.head {
- self.anchor <= pos && pos < self.head
- } else {
- self.head < pos && pos <= self.anchor
- }
+ self.from() <= pos && pos < self.to()
}
/// Map a range through a set of changes. Returns a new range representing the same position
@@ -89,10 +101,10 @@ impl Range {
let anchor = changes.map_pos(self.anchor, Assoc::After);
let head = changes.map_pos(self.head, Assoc::After);
- // TODO: possibly unnecessary
- if self.anchor == anchor && self.head == head {
- return self;
- }
+ // We want to return a new `Range` with `horiz == None` every time,
+ // even if the anchor and head haven't changed, because we don't
+ // know if the *visual* position hasn't changed due to
+ // character-width or grapheme changes earlier in the text.
Self {
anchor,
head,
@@ -103,22 +115,20 @@ impl Range {
/// Extend the range to cover at least `from` `to`.
#[must_use]
pub fn extend(&self, from: usize, to: usize) -> Self {
- if from <= self.anchor && to >= self.anchor {
- return Self {
- anchor: from,
- head: to,
- horiz: None,
- };
- }
+ debug_assert!(from <= to);
- Self {
- anchor: self.anchor,
- head: if abs_difference(from, self.anchor) > abs_difference(to, self.anchor) {
- from
- } else {
- to
- },
- horiz: None,
+ if self.anchor <= self.head {
+ Self {
+ anchor: self.anchor.min(from),
+ head: self.head.max(to),
+ horiz: None,
+ }
+ } else {
+ Self {
+ anchor: self.anchor.max(to),
+ head: self.head.min(from),
+ horiz: None,
+ }
}
}
@@ -126,7 +136,7 @@ impl Range {
#[inline]
pub fn fragment<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> Cow<'b, str> {
- Cow::from(text.slice(self.from()..self.to() + 1))
+ text.slice(self.from()..self.to()).into()
}
}
@@ -355,7 +365,7 @@ pub fn select_on_matches(
let start = text.byte_to_char(start_byte + mat.start());
let end = text.byte_to_char(start_byte + mat.end());
- result.push(Range::new(start, end.saturating_sub(1)));
+ result.push(Range::new(start, end));
}
}
@@ -376,6 +386,12 @@ pub fn split_on_matches(
let mut result = SmallVec::with_capacity(selection.len());
for sel in selection {
+ // Special case: zero-width selection.
+ if sel.from() == sel.to() {
+ result.push(*sel);
+ continue;
+ }
+
// TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
let fragment = sel.fragment(text);
@@ -388,13 +404,12 @@ pub fn split_on_matches(
for mat in regex.find_iter(&fragment) {
// TODO: retain range direction
-
let end = text.byte_to_char(start_byte + mat.start());
- result.push(Range::new(start, end.saturating_sub(1)));
+ result.push(Range::new(start, end));
start = text.byte_to_char(start_byte + mat.end());
}
- if start <= sel_end {
+ if start < sel_end {
result.push(Range::new(start, sel_end));
}
}
@@ -475,7 +490,7 @@ mod test {
.collect::<Vec<String>>()
.join(",");
- assert_eq!(res, "8/10,10/12");
+ assert_eq!(res, "8/10,10/12,12/12");
}
#[test]
@@ -489,35 +504,90 @@ mod test {
assert_eq!(range.contains(13), false);
let range = Range::new(9, 6);
- assert_eq!(range.contains(9), true);
+ assert_eq!(range.contains(9), false);
assert_eq!(range.contains(7), true);
- assert_eq!(range.contains(6), false);
+ assert_eq!(range.contains(6), true);
+ }
+
+ #[test]
+ fn test_overlaps() {
+ // Two non-zero-width ranges, no overlap.
+ assert!(!Range::new(0, 3).overlaps(&Range::new(3, 6)));
+ assert!(!Range::new(0, 3).overlaps(&Range::new(6, 3)));
+ assert!(!Range::new(3, 0).overlaps(&Range::new(3, 6)));
+ assert!(!Range::new(3, 0).overlaps(&Range::new(6, 3)));
+ assert!(!Range::new(3, 6).overlaps(&Range::new(0, 3)));
+ assert!(!Range::new(3, 6).overlaps(&Range::new(3, 0)));
+ assert!(!Range::new(6, 3).overlaps(&Range::new(0, 3)));
+ assert!(!Range::new(6, 3).overlaps(&Range::new(3, 0)));
+
+ // Two non-zero-width ranges, overlap.
+ assert!(Range::new(0, 4).overlaps(&Range::new(3, 6)));
+ assert!(Range::new(0, 4).overlaps(&Range::new(6, 3)));
+ assert!(Range::new(4, 0).overlaps(&Range::new(3, 6)));
+ assert!(Range::new(4, 0).overlaps(&Range::new(6, 3)));
+ assert!(Range::new(3, 6).overlaps(&Range::new(0, 4)));
+ assert!(Range::new(3, 6).overlaps(&Range::new(4, 0)));
+ assert!(Range::new(6, 3).overlaps(&Range::new(0, 4)));
+ assert!(Range::new(6, 3).overlaps(&Range::new(4, 0)));
+
+ // Zero-width and non-zero-width range, no overlap.
+ assert!(!Range::new(0, 3).overlaps(&Range::new(3, 3)));
+ assert!(!Range::new(3, 0).overlaps(&Range::new(3, 3)));
+ assert!(!Range::new(3, 3).overlaps(&Range::new(0, 3)));
+ assert!(!Range::new(3, 3).overlaps(&Range::new(3, 0)));
+
+ // Zero-width and non-zero-width range, overlap.
+ assert!(Range::new(1, 4).overlaps(&Range::new(1, 1)));
+ assert!(Range::new(4, 1).overlaps(&Range::new(1, 1)));
+ assert!(Range::new(1, 1).overlaps(&Range::new(1, 4)));
+ assert!(Range::new(1, 1).overlaps(&Range::new(4, 1)));
+
+ assert!(Range::new(1, 4).overlaps(&Range::new(3, 3)));
+ assert!(Range::new(4, 1).overlaps(&Range::new(3, 3)));
+ assert!(Range::new(3, 3).overlaps(&Range::new(1, 4)));
+ assert!(Range::new(3, 3).overlaps(&Range::new(4, 1)));
+
+ // Two zero-width ranges, no overlap.
+ assert!(!Range::new(0, 0).overlaps(&Range::new(1, 1)));
+ assert!(!Range::new(1, 1).overlaps(&Range::new(0, 0)));
+
+ // Two zero-width ranges, overlap.
+ assert!(Range::new(1, 1).overlaps(&Range::new(1, 1)));
}
#[test]
fn test_split_on_matches() {
use crate::regex::Regex;
- let text = Rope::from("abcd efg wrs xyz 123 456");
+ let text = Rope::from(" abcd efg wrs xyz 123 456");
- let selection = Selection::new(smallvec![Range::new(0, 8), Range::new(10, 19),], 0);
+ let selection = Selection::new(smallvec![Range::new(0, 9), Range::new(11, 20),], 0);
let result = split_on_matches(text.slice(..), &selection, &Regex::new(r"\s+").unwrap());
assert_eq!(
result.ranges(),
&[
- Range::new(0, 3),
- Range::new(5, 7),
- Range::new(10, 11),
- Range::new(15, 17),
- Range::new(19, 19),
+ // We get a leading zero-width range when there's
+ // a leading match because ranges are inclusive on
+ // the left. Imagine, for example, if the entire
+ // selection range were matched: you'd still want
+ // at least one range to remain after the split.
+ Range::new(0, 0),
+ Range::new(1, 5),
+ Range::new(6, 9),
+ Range::new(11, 13),
+ Range::new(16, 19),
+ // In contrast to the comment above, there is no
+ // _trailing_ zero-width range despite the trailing
+ // match, because ranges are exclusive on the right.
]
);
assert_eq!(
result.fragments(text.slice(..)).collect::<Vec<_>>(),
- &["abcd", "efg", "rs", "xyz", "1"]
+ &["", "abcd", "efg", "rs", "xyz"]
);
}
}