summaryrefslogtreecommitdiff
path: root/helix-core/src/graphemes.rs
blob: 7cb5cd0625d5c98958b13455f93604f13d71dc07 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//! Utility functions to traverse the unicode graphemes of a `Rope`'s text contents.
//!
//! Based on <https://github.com/cessen/led/blob/c4fa72405f510b7fd16052f90a598c429b3104a6/src/graphemes.rs>
use ropey::{iter::Chunks, str_utils::byte_to_char_idx, RopeSlice};
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
use unicode_width::UnicodeWidthStr;

use std::borrow::Cow;
use std::fmt::{self, Debug, Display};
use std::marker::PhantomData;
use std::ops::Deref;
use std::ptr::NonNull;
use std::{slice, str};

use crate::chars::{char_is_whitespace, char_is_word};
use crate::LineEnding;

#[inline]
pub fn tab_width_at(visual_x: usize, tab_width: u16) -> usize {
    tab_width as usize - (visual_x % tab_width as usize)
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Grapheme<'a> {
    Newline,
    Tab { width: usize },
    Other { g: GraphemeStr<'a> },
}

impl<'a> Grapheme<'a> {
    pub fn new(g: GraphemeStr<'a>, visual_x: usize, tab_width: u16) -> Grapheme<'a> {
        match g {
            g if g == "\t" => Grapheme::Tab {
                width: tab_width_at(visual_x, tab_width),
            },
            _ if LineEnding::from_str(&g).is_some() => Grapheme::Newline,
            _ => Grapheme::Other { g },
        }
    }

    pub fn change_position(&mut self, visual_x: usize, tab_width: u16) {
        if let Grapheme::Tab { width } = self {
            *width = tab_width_at(visual_x, tab_width)
        }
    }

    /// Returns the a visual width of this grapheme,
    #[inline]
    pub fn width(&self) -> usize {
        match *self {
            // width is not cached because we are dealing with
            // ASCII almost all the time which already has a fastpath
            // it's okay to convert to u16 here because no codepoint has a width larger
            // than 2 and graphemes are usually atmost two visible codepoints wide
            Grapheme::Other { ref g } => grapheme_width(g),
            Grapheme::Tab { width } => width,
            Grapheme::Newline => 1,
        }
    }

    pub fn is_whitespace(&self) -> bool {
        !matches!(&self, Grapheme::Other { g } if !g.chars().all(char_is_whitespace))
    }

    // TODO currently word boundaries are used for softwrapping.
    // This works best for programming languages and well for prose.
    // This could however be improved in the future by considering unicode
    // character classes but
    pub fn is_word_boundary(&self) -> bool {
        !matches!(&self, Grapheme::Other { g,.. } if g.chars().all(char_is_word))
    }
}

impl Display for Grapheme<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Grapheme::Newline => write!(f, " "),
            Grapheme::Tab { width } => {
                for _ in 0..width {
                    write!(f, " ")?;
                }
                Ok(())
            }
            Grapheme::Other { ref g } => {
                write!(f, "{g}")
            }
        }
    }
}

#[must_use]
pub fn grapheme_width(g: &str) -> usize {
    if g.as_bytes()[0] <= 127 {
        // Fast-path ascii.
        // Point 1: theoretically, ascii control characters should have zero
        // width, but in our case we actually want them to have width: if they
        // show up in text, we want to treat them as textual elements that can
        // be edited.  So we can get away with making all ascii single width
        // here.
        // Point 2: we're only examining the first codepoint here, which means
        // we're ignoring graphemes formed with combining characters.  However,
        // if it starts with ascii, it's going to be a single-width grapeheme
        // regardless, so, again, we can get away with that here.
        // Point 3: we're only examining the first _byte_.  But for utf8, when
        // checking for ascii range values only, that works.
        1
    } else {
        // We use max(1) here because all grapeheme clusters--even illformed
        // ones--should have at least some width so they can be edited
        // properly.
        // TODO properly handle unicode width for all codepoints
        // example of where unicode width is currently wrong: 🤦🏼‍♂️ (taken from https://hsivonen.fi/string-length/)
        UnicodeWidthStr::width(g).max(1)
    }
}

#[must_use]
pub fn nth_prev_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize {
    // Bounds check
    debug_assert!(char_idx <= slice.len_chars());

    // We work with bytes for this, so convert.
    let mut byte_idx = slice.char_to_byte(char_idx);

    // Get the chunk with our byte index in it.
    let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);

    // Set up the grapheme cursor.
    let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);

    // Find the previous grapheme cluster boundary.
    for _ in 0..n {
        loop {
            match gc.prev_boundary(chunk, chunk_byte_idx) {
                Ok(None) => return 0,
                Ok(Some(n)) => {
                    byte_idx = n;
                    break;
                }
                Err(GraphemeIncomplete::PrevChunk) => {
                    let (a, b, c, _) = slice.chunk_at_byte(chunk_byte_idx - 1);
                    chunk = a;
                    chunk_byte_idx = b;
                    chunk_char_idx = c;
                }
                Err(GraphemeIncomplete::PreContext(n)) => {
                    let ctx_chunk = slice.chunk_at_byte(n - 1).0;
                    gc.provide_context(ctx_chunk, n - ctx_chunk.len());
                }
                _ => unreachable!(),
            }
        }
    }
    let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx);
    chunk_char_idx + tmp
}

/// Finds the previous grapheme boundary before the given char position.
#[must_use]
#[inline(always)]
pub fn prev_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize {
    nth_prev_grapheme_boundary(slice, char_idx, 1)
}

#[must_use]
pub fn nth_next_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize {
    // Bounds check
    debug_assert!(char_idx <= slice.len_chars());

    // We work with bytes for this, so convert.
    let mut byte_idx = slice.char_to_byte(char_idx);

    // Get the chunk with our byte index in it.
    let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);

    // Set up the grapheme cursor.
    let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);

    // Find the nth next grapheme cluster boundary.
    for _ in 0..n {
        loop {
            match gc.next_boundary(chunk, chunk_byte_idx) {
                Ok(None) => return slice.len_chars(),
                Ok(Some(n)) => {
                    byte_idx = n;
                    break;
                }
                Err(GraphemeIncomplete::NextChunk) => {
                    chunk_byte_idx += chunk.len();
                    let (a, _, c, _) = slice.chunk_at_byte(chunk_byte_idx);
                    chunk = a;
                    chunk_char_idx = c;
                }
                Err(GraphemeIncomplete::PreContext(n)) => {
                    let ctx_chunk = slice.chunk_at_byte(n - 1).0;
                    gc.provide_context(ctx_chunk, n - ctx_chunk.len());
                }
                _ => unreachable!(),
            }
        }
    }
    let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx);
    chunk_char_idx + tmp
}

#[must_use]
pub fn nth_next_grapheme_boundary_byte(slice: RopeSlice, mut byte_idx: usize, n: usize) -> usize {
    // Bounds check
    debug_assert!(byte_idx <= slice.len_bytes());

    // Get the chunk with our byte index in it.
    let (mut chunk, mut chunk_byte_idx, mut _chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);

    // Set up the grapheme cursor.
    let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);

    // Find the nth next grapheme cluster boundary.
    for _ in 0..n {
        loop {
            match gc.next_boundary(chunk, chunk_byte_idx) {
                Ok(None) => return slice.len_bytes(),
                Ok(Some(n)) => {
                    byte_idx = n;
                    break;
                }
                Err(GraphemeIncomplete::NextChunk) => {
                    chunk_byte_idx += chunk.len();
                    let (a, _, _c, _) = slice.chunk_at_byte(chunk_byte_idx);
                    chunk = a;
                    // chunk_char_idx = c;
                }
                Err(GraphemeIncomplete::PreContext(n)) => {
                    let ctx_chunk = slice.chunk_at_byte(n - 1).0;
                    gc.provide_context(ctx_chunk, n - ctx_chunk.len());
                }
                _ => unreachable!(),
            }
        }
    }
    byte_idx
}

/// Finds the next grapheme boundary after the given char position.
#[must_use]
#[inline(always)]
pub fn next_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize {
    nth_next_grapheme_boundary(slice, char_idx, 1)
}

/// Finds the next grapheme boundary after the given byte position.
#[must_use]
#[inline(always)]
pub fn next_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> usize {
    nth_next_grapheme_boundary_byte(slice, byte_idx, 1)
}

/// Returns the passed char index if it's already a grapheme boundary,
/// or the next grapheme boundary char index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_next(slice: RopeSlice, char_idx: usize) -> usize {
    if char_idx == 0 {
        char_idx
    } else {
        next_grapheme_boundary(slice, char_idx - 1)
    }
}

/// Returns the passed char index if it's already a grapheme boundary,
/// or the prev grapheme boundary char index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_prev(slice: RopeSlice, char_idx: usize) -> usize {
    if char_idx == slice.len_chars() {
        char_idx
    } else {
        prev_grapheme_boundary(slice, char_idx + 1)
    }
}

/// Returns the passed byte index if it's already a grapheme boundary,
/// or the next grapheme boundary byte index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_next_byte(slice: RopeSlice, byte_idx: usize) -> usize {
    if byte_idx == 0 {
        byte_idx
    } else {
        // TODO: optimize so we're not constructing grapheme cursor twice
        if is_grapheme_boundary_byte(slice, byte_idx) {
            byte_idx
        } else {
            next_grapheme_boundary_byte(slice, byte_idx)
        }
    }
}

/// Returns whether the given char position is a grapheme boundary.
#[must_use]
pub fn is_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> bool {
    // Bounds check
    debug_assert!(char_idx <= slice.len_chars());

    // We work with bytes for this, so convert.
    let byte_idx = slice.char_to_byte(char_idx);

    // Get the chunk with our byte index in it.
    let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx);

    // Set up the grapheme cursor.
    let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);

    // Determine if the given position is a grapheme cluster boundary.
    loop {
        match gc.is_boundary(chunk, chunk_byte_idx) {
            Ok(n) => return n,
            Err(GraphemeIncomplete::PreContext(n)) => {
                let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1);
                gc.provide_context(ctx_chunk, ctx_byte_start);
            }
            Err(_) => unreachable!(),
        }
    }
}

/// Returns whether the given byte position is a grapheme boundary.
#[must_use]
pub fn is_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> bool {
    // Bounds check
    debug_assert!(byte_idx <= slice.len_bytes());

    // Get the chunk with our byte index in it.
    let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx);

    // Set up the grapheme cursor.
    let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);

    // Determine if the given position is a grapheme cluster boundary.
    loop {
        match gc.is_boundary(chunk, chunk_byte_idx) {
            Ok(n) => return n,
            Err(GraphemeIncomplete::PreContext(n)) => {
                let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1);
                gc.provide_context(ctx_chunk, ctx_byte_start);
            }
            Err(_) => unreachable!(),
        }
    }
}

/// An iterator over the graphemes of a `RopeSlice`.
#[derive(Clone)]
pub struct RopeGraphemes<'a> {
    text: RopeSlice<'a>,
    chunks: Chunks<'a>,
    cur_chunk: &'a str,
    cur_chunk_start: usize,
    cursor: GraphemeCursor,
}

impl<'a> fmt::Debug for RopeGraphemes<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("RopeGraphemes")
            .field("text", &self.text)
            .field("chunks", &self.chunks)
            .field("cur_chunk", &self.cur_chunk)
            .field("cur_chunk_start", &self.cur_chunk_start)
            // .field("cursor", &self.cursor)
            .finish()
    }
}

impl<'a> RopeGraphemes<'a> {
    #[must_use]
    pub fn new(slice: RopeSlice) -> RopeGraphemes {
        let mut chunks = slice.chunks();
        let first_chunk = chunks.next().unwrap_or("");
        RopeGraphemes {
            text: slice,
            chunks,
            cur_chunk: first_chunk,
            cur_chunk_start: 0,
            cursor: GraphemeCursor::new(0, slice.len_bytes(), true),
        }
    }
}

impl<'a> Iterator for RopeGraphemes<'a> {
    type Item = RopeSlice<'a>;

    fn next(&mut self) -> Option<RopeSlice<'a>> {
        let a = self.cursor.cur_cursor();
        let b;
        loop {
            match self
                .cursor
                .next_boundary(self.cur_chunk, self.cur_chunk_start)
            {
                Ok(None) => {
                    return None;
                }
                Ok(Some(n)) => {
                    b = n;
                    break;
                }
                Err(GraphemeIncomplete::NextChunk) => {
                    self.cur_chunk_start += self.cur_chunk.len();
                    self.cur_chunk = self.chunks.next().unwrap_or("");
                }
                Err(GraphemeIncomplete::PreContext(idx)) => {
                    let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
                    self.cursor.provide_context(chunk, byte_idx);
                }
                _ => unreachable!(),
            }
        }

        if a < self.cur_chunk_start {
            Some(self.text.byte_slice(a..b))
        } else {
            let a2 = a - self.cur_chunk_start;
            let b2 = b - self.cur_chunk_start;
            Some((&self.cur_chunk[a2..b2]).into())
        }
    }
}

/// An iterator over the graphemes of a `RopeSlice` in reverse.
#[derive(Clone)]
pub struct RevRopeGraphemes<'a> {
    text: RopeSlice<'a>,
    chunks: Chunks<'a>,
    cur_chunk: &'a str,
    cur_chunk_start: usize,
    cursor: GraphemeCursor,
}

impl<'a> fmt::Debug for RevRopeGraphemes<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("RevRopeGraphemes")
            .field("text", &self.text)
            .field("chunks", &self.chunks)
            .field("cur_chunk", &self.cur_chunk)
            .field("cur_chunk_start", &self.cur_chunk_start)
            // .field("cursor", &self.cursor)
            .finish()
    }
}

impl<'a> RevRopeGraphemes<'a> {
    #[must_use]
    pub fn new(slice: RopeSlice) -> RevRopeGraphemes {
        let (mut chunks, mut cur_chunk_start, _, _) = slice.chunks_at_byte(slice.len_bytes());
        chunks.reverse();
        let first_chunk = chunks.next().unwrap_or("");
        cur_chunk_start -= first_chunk.len();
        RevRopeGraphemes {
            text: slice,
            chunks,
            cur_chunk: first_chunk,
            cur_chunk_start,
            cursor: GraphemeCursor::new(slice.len_bytes(), slice.len_bytes(), true),
        }
    }
}

impl<'a> Iterator for RevRopeGraphemes<'a> {
    type Item = RopeSlice<'a>;

    fn next(&mut self) -> Option<RopeSlice<'a>> {
        let a = self.cursor.cur_cursor();
        let b;
        loop {
            match self
                .cursor
                .prev_boundary(self.cur_chunk, self.cur_chunk_start)
            {
                Ok(None) => {
                    return None;
                }
                Ok(Some(n)) => {
                    b = n;
                    break;
                }
                Err(GraphemeIncomplete::PrevChunk) => {
                    self.cur_chunk = self.chunks.next().unwrap_or("");
                    self.cur_chunk_start -= self.cur_chunk.len();
                }
                Err(GraphemeIncomplete::PreContext(idx)) => {
                    let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
                    self.cursor.provide_context(chunk, byte_idx);
                }
                _ => unreachable!(),
            }
        }

        if a >= self.cur_chunk_start + self.cur_chunk.len() {
            Some(self.text.byte_slice(b..a))
        } else {
            let a2 = a - self.cur_chunk_start;
            let b2 = b - self.cur_chunk_start;
            Some((&self.cur_chunk[b2..a2]).into())
        }
    }
}

/// A highly compressed Cow<'a, str> that holds
/// atmost u31::MAX bytes and is readonly
pub struct GraphemeStr<'a> {
    ptr: NonNull<u8>,
    len: u32,
    phantom: PhantomData<&'a str>,
}

impl GraphemeStr<'_> {
    const MASK_OWNED: u32 = 1 << 31;

    fn compute_len(&self) -> usize {
        (self.len & !Self::MASK_OWNED) as usize
    }
}

impl Deref for GraphemeStr<'_> {
    type Target = str;
    fn deref(&self) -> &Self::Target {
        unsafe {
            let bytes = slice::from_raw_parts(self.ptr.as_ptr(), self.compute_len());
            str::from_utf8_unchecked(bytes)
        }
    }
}

impl Drop for GraphemeStr<'_> {
    fn drop(&mut self) {
        if self.len & Self::MASK_OWNED != 0 {
            // free allocation
            unsafe {
                drop(Box::from_raw(slice::from_raw_parts_mut(
                    self.ptr.as_ptr(),
                    self.compute_len(),
                )));
            }
        }
    }
}

impl<'a> From<&'a str> for GraphemeStr<'a> {
    fn from(g: &'a str) -> Self {
        GraphemeStr {
            ptr: unsafe { NonNull::new_unchecked(g.as_bytes().as_ptr() as *mut u8) },
            len: i32::try_from(g.len()).unwrap() as u32,
            phantom: PhantomData,
        }
    }
}

impl<'a> From<String> for GraphemeStr<'a> {
    fn from(g: String) -> Self {
        let len = g.len();
        let ptr = Box::into_raw(g.into_bytes().into_boxed_slice()) as *mut u8;
        GraphemeStr {
            ptr: unsafe { NonNull::new_unchecked(ptr) },
            len: (i32::try_from(len).unwrap() as u32) | Self::MASK_OWNED,
            phantom: PhantomData,
        }
    }
}

impl<'a> From<Cow<'a, str>> for GraphemeStr<'a> {
    fn from(g: Cow<'a, str>) -> Self {
        match g {
            Cow::Borrowed(g) => g.into(),
            Cow::Owned(g) => g.into(),
        }
    }
}

impl<T: Deref<Target = str>> PartialEq<T> for GraphemeStr<'_> {
    fn eq(&self, other: &T) -> bool {
        self.deref() == other.deref()
    }
}
impl PartialEq<str> for GraphemeStr<'_> {
    fn eq(&self, other: &str) -> bool {
        self.deref() == other
    }
}
impl Eq for GraphemeStr<'_> {}
impl Debug for GraphemeStr<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Debug::fmt(self.deref(), f)
    }
}
impl Display for GraphemeStr<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt(self.deref(), f)
    }
}
impl Clone for GraphemeStr<'_> {
    fn clone(&self) -> Self {
        self.deref().to_owned().into()
    }
}