summaryrefslogtreecommitdiff
path: root/helix-core/src/selection.rs
blob: 247a69fe4755da6fb597a4fd9efa173e6d4b722c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
//! Selections are the primary editing construct. Even a single cursor is
//! defined as a single empty or 1-wide selection range.
//!
//! All positioning is done via `char` offsets into the buffer.
use crate::{
    graphemes::{
        ensure_grapheme_boundary_next, ensure_grapheme_boundary_prev, next_grapheme_boundary,
        prev_grapheme_boundary,
    },
    Assoc, ChangeSet, RopeSlice,
};
use smallvec::{smallvec, SmallVec};
use std::borrow::Cow;

/// A single selection range.
///
/// The range consists of an "anchor" and "head" position in
/// the text.  The head is the part that the user moves when
/// directly extending the selection.  The head and anchor
/// can be in any order: either can precede or follow the
/// other in the text, and they can share the same position
/// for a zero-width range.
///
/// Below are some example `Range` configurations to better
/// illustrate.  The anchor and head indices are show as
/// "(anchor, head)", followed by example text with "[" and "]"
/// inserted to visually represent the anchor and head positions:
///
/// - (0, 3): [Som]e text.
/// - (3, 0): ]Som[e text.
/// - (2, 7): So[me te]xt.
/// - (1, 1): S[]ome text.
///
/// Ranges are considered to be inclusive on the left and
/// exclusive on the right, regardless of anchor-head ordering.
/// This means, for example, that non-zero-width ranges that
/// are directly adjecent, sharing an edge, do not overlap.
/// However, a zero-width range will overlap with the shared
/// left-edge of another range.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Range {
    /// The anchor of the range: the side that doesn't move when extending.
    pub anchor: usize,
    /// The head of the range, moved when extending.
    pub head: usize,
    pub horiz: Option<u32>,
}

impl Range {
    pub fn new(anchor: usize, head: usize) -> Self {
        Self {
            anchor,
            head,
            horiz: None,
        }
    }

    pub fn point(head: usize) -> Self {
        Self::new(head, head)
    }

    /// Start of the range.
    #[inline]
    #[must_use]
    pub fn from(&self) -> usize {
        std::cmp::min(self.anchor, self.head)
    }

    /// End of the range.
    #[inline]
    #[must_use]
    pub fn to(&self) -> usize {
        std::cmp::max(self.anchor, self.head)
    }

    /// The line number that the block-cursor is on.
    #[inline]
    #[must_use]
    pub fn cursor_line(&self, text: RopeSlice) -> usize {
        text.char_to_line(self.cursor(text))
    }

    /// The (inclusive) range of lines that the range overlaps.
    #[inline]
    #[must_use]
    pub fn line_range(&self, text: RopeSlice) -> (usize, usize) {
        let from = self.from();
        let to = if self.is_empty() {
            self.to()
        } else {
            prev_grapheme_boundary(text, self.to()).max(from)
        };

        (text.char_to_line(from), text.char_to_line(to))
    }

    /// `true` when head and anchor are at the same position.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.anchor == self.head
    }

    /// Check two ranges for overlap.
    #[must_use]
    pub fn overlaps(&self, other: &Self) -> bool {
        // To my eye, it's non-obvious why this works, but I arrived
        // at it after transforming the slower version that explicitly
        // enumerated more cases.  The unit tests are thorough.
        self.from() == other.from() || (self.to() > other.from() && other.to() > self.from())
    }

    pub fn contains(&self, pos: usize) -> bool {
        self.from() <= pos && pos < self.to()
    }

    /// Map a range through a set of changes. Returns a new range representing the same position
    /// after the changes are applied.
    pub fn map(self, changes: &ChangeSet) -> Self {
        use std::cmp::Ordering;
        let (anchor, head) = match self.anchor.cmp(&self.head) {
            Ordering::Equal => (
                changes.map_pos(self.anchor, Assoc::After),
                changes.map_pos(self.head, Assoc::After),
            ),
            Ordering::Less => (
                changes.map_pos(self.anchor, Assoc::After),
                changes.map_pos(self.head, Assoc::Before),
            ),
            Ordering::Greater => (
                changes.map_pos(self.anchor, Assoc::Before),
                changes.map_pos(self.head, Assoc::After),
            ),
        };

        // We want to return a new `Range` with `horiz == None` every time,
        // even if the anchor and head haven't changed, because we don't
        // know if the *visual* position hasn't changed due to
        // character-width or grapheme changes earlier in the text.
        Self {
            anchor,
            head,
            horiz: None,
        }
    }

    /// Extend the range to cover at least `from` `to`.
    #[must_use]
    pub fn extend(&self, from: usize, to: usize) -> Self {
        debug_assert!(from <= to);

        if self.anchor <= self.head {
            Self {
                anchor: self.anchor.min(from),
                head: self.head.max(to),
                horiz: None,
            }
        } else {
            Self {
                anchor: self.anchor.max(to),
                head: self.head.min(from),
                horiz: None,
            }
        }
    }

    /// Returns a range that encompasses both input ranges.
    ///
    /// This is like `extend()`, but tries to negotiate the
    /// anchor/head ordering between the two input ranges.
    #[must_use]
    pub fn merge(&self, other: Self) -> Self {
        if self.anchor > self.head && other.anchor > other.head {
            Range {
                anchor: self.anchor.max(other.anchor),
                head: self.head.min(other.head),
                horiz: None,
            }
        } else {
            Range {
                anchor: self.from().min(other.from()),
                head: self.to().max(other.to()),
                horiz: None,
            }
        }
    }

    /// Compute a possibly new range from this range, attempting to ensure
    /// a minimum range width of 1 char by shifting the head in the forward
    /// direction as needed.
    ///
    /// This method will never shift the anchor, and will only shift the
    /// head in the forward direction.  Therefore, this method can fail
    /// at ensuring the minimum width if and only if the passed range is
    /// both zero-width and at the end of the `RopeSlice`.
    ///
    /// If the input range is grapheme-boundary aligned, the returned range
    /// will also be.  Specifically, if the head needs to shift to achieve
    /// the minimum width, it will shift to the next grapheme boundary.
    #[must_use]
    #[inline]
    pub fn min_width_1(&self, slice: RopeSlice) -> Self {
        if self.anchor == self.head {
            Range {
                anchor: self.anchor,
                head: next_grapheme_boundary(slice, self.head),
                horiz: self.horiz,
            }
        } else {
            *self
        }
    }

    /// Compute a possibly new range from this range, with its ends
    /// shifted as needed to align with grapheme boundaries.
    ///
    /// Zero-width ranges will always stay zero-width, and non-zero-width
    /// ranges will never collapse to zero-width.
    #[must_use]
    pub fn grapheme_aligned(&self, slice: RopeSlice) -> Self {
        use std::cmp::Ordering;
        let (new_anchor, new_head) = match self.anchor.cmp(&self.head) {
            Ordering::Equal => {
                let pos = ensure_grapheme_boundary_prev(slice, self.anchor);
                (pos, pos)
            }
            Ordering::Less => (
                ensure_grapheme_boundary_prev(slice, self.anchor),
                ensure_grapheme_boundary_next(slice, self.head),
            ),
            Ordering::Greater => (
                ensure_grapheme_boundary_next(slice, self.anchor),
                ensure_grapheme_boundary_prev(slice, self.head),
            ),
        };
        Range {
            anchor: new_anchor,
            head: new_head,
            horiz: if new_anchor == self.anchor {
                self.horiz
            } else {
                None
            },
        }
    }

    /// Gets the left-side position of the block cursor.
    #[must_use]
    #[inline]
    pub fn cursor(self, text: RopeSlice) -> usize {
        if self.head > self.anchor {
            prev_grapheme_boundary(text, self.head)
        } else {
            self.head
        }
    }

    /// Puts the left side of the block cursor at `char_idx`, optionally extending.
    ///
    /// This follows "1-width" semantics, and therefore does a combination of anchor
    /// and head moves to behave as if both the front and back of the range are 1-width
    /// blocks
    ///
    /// This method assumes that the range and `char_idx` are already properly
    /// grapheme-aligned.
    #[must_use]
    #[inline]
    pub fn put_cursor(self, text: RopeSlice, char_idx: usize, extend: bool) -> Range {
        if extend {
            let anchor = if self.head >= self.anchor && char_idx < self.anchor {
                next_grapheme_boundary(text, self.anchor)
            } else if self.head < self.anchor && char_idx >= self.anchor {
                prev_grapheme_boundary(text, self.anchor)
            } else {
                self.anchor
            };

            if anchor <= char_idx {
                Range::new(anchor, next_grapheme_boundary(text, char_idx))
            } else {
                Range::new(anchor, char_idx)
            }
        } else {
            Range::point(char_idx)
        }
    }

    // groupAt

    #[inline]
    pub fn fragment<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> Cow<'b, str> {
        text.slice(self.from()..self.to()).into()
    }
}

impl From<(usize, usize)> for Range {
    fn from(tuple: (usize, usize)) -> Self {
        Self {
            anchor: tuple.0,
            head: tuple.1,
            horiz: None,
        }
    }
}

/// A selection consists of one or more selection ranges.
/// invariant: A selection can never be empty (always contains at least primary range).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Selection {
    ranges: SmallVec<[Range; 1]>,
    primary_index: usize,
}

#[allow(clippy::len_without_is_empty)] // a Selection is never empty
impl Selection {
    // eq

    #[must_use]
    pub fn primary(&self) -> Range {
        self.ranges[self.primary_index]
    }

    /// Ensure selection containing only the primary selection.
    pub fn into_single(self) -> Self {
        if self.ranges.len() == 1 {
            self
        } else {
            Self {
                ranges: smallvec![self.ranges[self.primary_index]],
                primary_index: 0,
            }
        }
    }

    /// Adds a new range to the selection and makes it the primary range.
    pub fn push(mut self, range: Range) -> Self {
        self.ranges.push(range);
        self.set_primary_index(self.ranges().len() - 1);
        self.normalize()
    }

    /// Map selections over a set of changes. Useful for adjusting the selection position after
    /// applying changes to a document.
    pub fn map(self, changes: &ChangeSet) -> Self {
        if changes.is_empty() {
            return self;
        }

        Self::new(
            self.ranges
                .into_iter()
                .map(|range| range.map(changes))
                .collect(),
            self.primary_index,
        )
    }

    pub fn ranges(&self) -> &[Range] {
        &self.ranges
    }

    pub fn primary_index(&self) -> usize {
        self.primary_index
    }

    pub fn set_primary_index(&mut self, idx: usize) {
        assert!(idx < self.ranges.len());
        self.primary_index = idx;
    }

    #[must_use]
    /// Constructs a selection holding a single range.
    pub fn single(anchor: usize, head: usize) -> Self {
        Self {
            ranges: smallvec![Range {
                anchor,
                head,
                horiz: None
            }],
            primary_index: 0,
        }
    }

    /// Constructs a selection holding a single cursor.
    pub fn point(pos: usize) -> Self {
        Self::single(pos, pos)
    }

    /// Normalizes a `Selection`.
    fn normalize(mut self) -> Self {
        let primary = self.ranges[self.primary_index];
        self.ranges.sort_unstable_by_key(Range::from);
        self.primary_index = self
            .ranges
            .iter()
            .position(|&range| range == primary)
            .unwrap();

        let mut prev_i = 0;
        for i in 1..self.ranges.len() {
            if self.ranges[prev_i].overlaps(&self.ranges[i]) {
                self.ranges[prev_i] = self.ranges[prev_i].merge(self.ranges[i]);
            } else {
                prev_i += 1;
                self.ranges[prev_i] = self.ranges[i];
            }
            if i == self.primary_index {
                self.primary_index = prev_i;
            }
        }

        self.ranges.truncate(prev_i + 1);

        self
    }

    // TODO: consume an iterator or a vec to reduce allocations?
    #[must_use]
    pub fn new(ranges: SmallVec<[Range; 1]>, primary_index: usize) -> Self {
        assert!(!ranges.is_empty());
        debug_assert!(primary_index < ranges.len());

        let mut selection = Self {
            ranges,
            primary_index,
        };

        if selection.ranges.len() > 1 {
            // TODO: only normalize if needed (any ranges out of order)
            selection = selection.normalize();
        }

        selection
    }

    /// Takes a closure and maps each `Range` over the closure.
    pub fn transform<F>(mut self, f: F) -> Self
    where
        F: Fn(Range) -> Range,
    {
        for range in self.ranges.iter_mut() {
            *range = f(*range)
        }

        self.normalize()
    }

    /// A convenience short-cut for `transform(|r| r.min_width_1(text))`.
    pub fn min_width_1(self, text: RopeSlice) -> Self {
        self.transform(|r| r.min_width_1(text))
    }

    /// Transforms the selection into all of the left-side head positions,
    /// using block-cursor semantics.
    pub fn cursors(self, text: RopeSlice) -> Self {
        self.transform(|range| Range::point(range.cursor(text)))
    }

    pub fn fragments<'a>(&'a self, text: RopeSlice<'a>) -> impl Iterator<Item = Cow<str>> + 'a {
        self.ranges.iter().map(move |range| range.fragment(text))
    }

    #[inline(always)]
    pub fn iter(&self) -> std::slice::Iter<'_, Range> {
        self.ranges.iter()
    }

    #[inline(always)]
    pub fn len(&self) -> usize {
        self.ranges.len()
    }
}

impl<'a> IntoIterator for &'a Selection {
    type Item = &'a Range;
    type IntoIter = std::slice::Iter<'a, Range>;

    fn into_iter(self) -> std::slice::Iter<'a, Range> {
        self.ranges().iter()
    }
}

// TODO: checkSelection -> check if valid for doc length && sorted

pub fn keep_matches(
    text: RopeSlice,
    selection: &Selection,
    regex: &crate::regex::Regex,
) -> Option<Selection> {
    let result: SmallVec<_> = selection
        .iter()
        .filter(|range| regex.is_match(&range.fragment(text)))
        .copied()
        .collect();

    // TODO: figure out a new primary index
    if !result.is_empty() {
        return Some(Selection::new(result, 0));
    }
    None
}

pub fn select_on_matches(
    text: RopeSlice,
    selection: &Selection,
    regex: &crate::regex::Regex,
) -> Option<Selection> {
    let mut result = SmallVec::with_capacity(selection.len());

    for sel in selection {
        // TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
        let fragment = sel.fragment(text);

        let sel_start = sel.from();
        let start_byte = text.char_to_byte(sel_start);

        for mat in regex.find_iter(&fragment) {
            // TODO: retain range direction

            let start = text.byte_to_char(start_byte + mat.start());
            let end = text.byte_to_char(start_byte + mat.end());
            result.push(Range::new(start, end));
        }
    }

    // TODO: figure out a new primary index
    if !result.is_empty() {
        return Some(Selection::new(result, 0));
    }

    None
}

// TODO: support to split on capture #N instead of whole match
pub fn split_on_matches(
    text: RopeSlice,
    selection: &Selection,
    regex: &crate::regex::Regex,
) -> Selection {
    let mut result = SmallVec::with_capacity(selection.len());

    for sel in selection {
        // Special case: zero-width selection.
        if sel.from() == sel.to() {
            result.push(*sel);
            continue;
        }

        // TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
        let fragment = sel.fragment(text);

        let sel_start = sel.from();
        let sel_end = sel.to();

        let start_byte = text.char_to_byte(sel_start);

        let mut start = sel_start;

        for mat in regex.find_iter(&fragment) {
            // TODO: retain range direction
            let end = text.byte_to_char(start_byte + mat.start());
            result.push(Range::new(start, end));
            start = text.byte_to_char(start_byte + mat.end());
        }

        if start < sel_end {
            result.push(Range::new(start, sel_end));
        }
    }

    // TODO: figure out a new primary index
    Selection::new(result, 0)
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::Rope;

    #[test]
    #[should_panic]
    fn test_new_empty() {
        let _ = Selection::new(smallvec![], 0);
    }

    #[test]
    fn test_create_normalizes_and_merges() {
        let sel = Selection::new(
            smallvec![
                Range::new(10, 12),
                Range::new(6, 7),
                Range::new(4, 5),
                Range::new(3, 4),
                Range::new(0, 6),
                Range::new(7, 8),
                Range::new(9, 13),
                Range::new(13, 14),
            ],
            0,
        );

        let res = sel
            .ranges
            .into_iter()
            .map(|range| format!("{}/{}", range.anchor, range.head))
            .collect::<Vec<String>>()
            .join(",");

        assert_eq!(res, "0/6,6/7,7/8,9/13,13/14");

        // it correctly calculates a new primary index
        let sel = Selection::new(
            smallvec![Range::new(0, 2), Range::new(1, 5), Range::new(4, 7)],
            2,
        );

        let res = sel
            .ranges
            .into_iter()
            .map(|range| format!("{}/{}", range.anchor, range.head))
            .collect::<Vec<String>>()
            .join(",");

        assert_eq!(res, "0/7");
        assert_eq!(sel.primary_index, 0);
    }

    #[test]
    fn test_create_merges_adjacent_points() {
        let sel = Selection::new(
            smallvec![
                Range::new(10, 12),
                Range::new(12, 12),
                Range::new(12, 12),
                Range::new(10, 10),
                Range::new(8, 10),
            ],
            0,
        );

        let res = sel
            .ranges
            .into_iter()
            .map(|range| format!("{}/{}", range.anchor, range.head))
            .collect::<Vec<String>>()
            .join(",");

        assert_eq!(res, "8/10,10/12,12/12");
    }

    #[test]
    fn test_contains() {
        let range = Range::new(10, 12);

        assert_eq!(range.contains(9), false);
        assert_eq!(range.contains(10), true);
        assert_eq!(range.contains(11), true);
        assert_eq!(range.contains(12), false);
        assert_eq!(range.contains(13), false);

        let range = Range::new(9, 6);
        assert_eq!(range.contains(9), false);
        assert_eq!(range.contains(7), true);
        assert_eq!(range.contains(6), true);
    }

    #[test]
    fn test_overlaps() {
        fn overlaps(a: (usize, usize), b: (usize, usize)) -> bool {
            Range::new(a.0, a.1).overlaps(&Range::new(b.0, b.1))
        }

        // Two non-zero-width ranges, no overlap.
        assert!(!overlaps((0, 3), (3, 6)));
        assert!(!overlaps((0, 3), (6, 3)));
        assert!(!overlaps((3, 0), (3, 6)));
        assert!(!overlaps((3, 0), (6, 3)));
        assert!(!overlaps((3, 6), (0, 3)));
        assert!(!overlaps((3, 6), (3, 0)));
        assert!(!overlaps((6, 3), (0, 3)));
        assert!(!overlaps((6, 3), (3, 0)));

        // Two non-zero-width ranges, overlap.
        assert!(overlaps((0, 4), (3, 6)));
        assert!(overlaps((0, 4), (6, 3)));
        assert!(overlaps((4, 0), (3, 6)));
        assert!(overlaps((4, 0), (6, 3)));
        assert!(overlaps((3, 6), (0, 4)));
        assert!(overlaps((3, 6), (4, 0)));
        assert!(overlaps((6, 3), (0, 4)));
        assert!(overlaps((6, 3), (4, 0)));

        // Zero-width and non-zero-width range, no overlap.
        assert!(!overlaps((0, 3), (3, 3)));
        assert!(!overlaps((3, 0), (3, 3)));
        assert!(!overlaps((3, 3), (0, 3)));
        assert!(!overlaps((3, 3), (3, 0)));

        // Zero-width and non-zero-width range, overlap.
        assert!(overlaps((1, 4), (1, 1)));
        assert!(overlaps((4, 1), (1, 1)));
        assert!(overlaps((1, 1), (1, 4)));
        assert!(overlaps((1, 1), (4, 1)));

        assert!(overlaps((1, 4), (3, 3)));
        assert!(overlaps((4, 1), (3, 3)));
        assert!(overlaps((3, 3), (1, 4)));
        assert!(overlaps((3, 3), (4, 1)));

        // Two zero-width ranges, no overlap.
        assert!(!overlaps((0, 0), (1, 1)));
        assert!(!overlaps((1, 1), (0, 0)));

        // Two zero-width ranges, overlap.
        assert!(overlaps((1, 1), (1, 1)));
    }

    #[test]
    fn test_graphem_aligned() {
        let r = Rope::from_str("\r\nHi\r\n");
        let s = r.slice(..);

        // Zero-width.
        assert_eq!(Range::new(0, 0).grapheme_aligned(s), Range::new(0, 0));
        assert_eq!(Range::new(1, 1).grapheme_aligned(s), Range::new(0, 0));
        assert_eq!(Range::new(2, 2).grapheme_aligned(s), Range::new(2, 2));
        assert_eq!(Range::new(3, 3).grapheme_aligned(s), Range::new(3, 3));
        assert_eq!(Range::new(4, 4).grapheme_aligned(s), Range::new(4, 4));
        assert_eq!(Range::new(5, 5).grapheme_aligned(s), Range::new(4, 4));
        assert_eq!(Range::new(6, 6).grapheme_aligned(s), Range::new(6, 6));

        // Forward.
        assert_eq!(Range::new(0, 1).grapheme_aligned(s), Range::new(0, 2));
        assert_eq!(Range::new(1, 2).grapheme_aligned(s), Range::new(0, 2));
        assert_eq!(Range::new(2, 3).grapheme_aligned(s), Range::new(2, 3));
        assert_eq!(Range::new(3, 4).grapheme_aligned(s), Range::new(3, 4));
        assert_eq!(Range::new(4, 5).grapheme_aligned(s), Range::new(4, 6));
        assert_eq!(Range::new(5, 6).grapheme_aligned(s), Range::new(4, 6));

        assert_eq!(Range::new(0, 2).grapheme_aligned(s), Range::new(0, 2));
        assert_eq!(Range::new(1, 3).grapheme_aligned(s), Range::new(0, 3));
        assert_eq!(Range::new(2, 4).grapheme_aligned(s), Range::new(2, 4));
        assert_eq!(Range::new(3, 5).grapheme_aligned(s), Range::new(3, 6));
        assert_eq!(Range::new(4, 6).grapheme_aligned(s), Range::new(4, 6));

        // Reverse.
        assert_eq!(Range::new(1, 0).grapheme_aligned(s), Range::new(2, 0));
        assert_eq!(Range::new(2, 1).grapheme_aligned(s), Range::new(2, 0));
        assert_eq!(Range::new(3, 2).grapheme_aligned(s), Range::new(3, 2));
        assert_eq!(Range::new(4, 3).grapheme_aligned(s), Range::new(4, 3));
        assert_eq!(Range::new(5, 4).grapheme_aligned(s), Range::new(6, 4));
        assert_eq!(Range::new(6, 5).grapheme_aligned(s), Range::new(6, 4));

        assert_eq!(Range::new(2, 0).grapheme_aligned(s), Range::new(2, 0));
        assert_eq!(Range::new(3, 1).grapheme_aligned(s), Range::new(3, 0));
        assert_eq!(Range::new(4, 2).grapheme_aligned(s), Range::new(4, 2));
        assert_eq!(Range::new(5, 3).grapheme_aligned(s), Range::new(6, 3));
        assert_eq!(Range::new(6, 4).grapheme_aligned(s), Range::new(6, 4));
    }

    #[test]
    fn test_min_width_1() {
        let r = Rope::from_str("\r\nHi\r\n");
        let s = r.slice(..);

        // Zero-width.
        assert_eq!(Range::new(0, 0).min_width_1(s), Range::new(0, 2));
        assert_eq!(Range::new(1, 1).min_width_1(s), Range::new(1, 2));
        assert_eq!(Range::new(2, 2).min_width_1(s), Range::new(2, 3));
        assert_eq!(Range::new(3, 3).min_width_1(s), Range::new(3, 4));
        assert_eq!(Range::new(4, 4).min_width_1(s), Range::new(4, 6));
        assert_eq!(Range::new(5, 5).min_width_1(s), Range::new(5, 6));
        assert_eq!(Range::new(6, 6).min_width_1(s), Range::new(6, 6));

        // Forward.
        assert_eq!(Range::new(0, 1).min_width_1(s), Range::new(0, 1));
        assert_eq!(Range::new(1, 2).min_width_1(s), Range::new(1, 2));
        assert_eq!(Range::new(2, 3).min_width_1(s), Range::new(2, 3));
        assert_eq!(Range::new(3, 4).min_width_1(s), Range::new(3, 4));
        assert_eq!(Range::new(4, 5).min_width_1(s), Range::new(4, 5));
        assert_eq!(Range::new(5, 6).min_width_1(s), Range::new(5, 6));

        // Reverse.
        assert_eq!(Range::new(1, 0).min_width_1(s), Range::new(1, 0));
        assert_eq!(Range::new(2, 1).min_width_1(s), Range::new(2, 1));
        assert_eq!(Range::new(3, 2).min_width_1(s), Range::new(3, 2));
        assert_eq!(Range::new(4, 3).min_width_1(s), Range::new(4, 3));
        assert_eq!(Range::new(5, 4).min_width_1(s), Range::new(5, 4));
        assert_eq!(Range::new(6, 5).min_width_1(s), Range::new(6, 5));
    }

    #[test]
    fn test_split_on_matches() {
        use crate::regex::Regex;

        let text = Rope::from(" abcd efg wrs   xyz 123 456");

        let selection = Selection::new(smallvec![Range::new(0, 9), Range::new(11, 20),], 0);

        let result = split_on_matches(text.slice(..), &selection, &Regex::new(r"\s+").unwrap());

        assert_eq!(
            result.ranges(),
            &[
                // TODO: rather than this behavior, maybe we want it
                // to be based on which side is the anchor?
                //
                // We get a leading zero-width range when there's
                // a leading match because ranges are inclusive on
                // the left.  Imagine, for example, if the entire
                // selection range were matched: you'd still want
                // at least one range to remain after the split.
                Range::new(0, 0),
                Range::new(1, 5),
                Range::new(6, 9),
                Range::new(11, 13),
                Range::new(16, 19),
                // In contrast to the comment above, there is no
                // _trailing_ zero-width range despite the trailing
                // match, because ranges are exclusive on the right.
            ]
        );

        assert_eq!(
            result.fragments(text.slice(..)).collect::<Vec<_>>(),
            &["", "abcd", "efg", "rs", "xyz"]
        );
    }
}