summaryrefslogtreecommitdiff
path: root/helix-parsec/src/lib.rs
blob: e09814b81f5b1ddb09690629993b1aa09419024a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//! Parser-combinator functions
//!
//! This module provides parsers and parser combinators which can be used
//! together to build parsers by functional composition.

// This module implements parser combinators following https://bodil.lol/parser-combinators/.
// `sym` (trait implementation for `&'static str`), `map`, `pred` (filter), `one_or_more`,
// `zero_or_more`, as well as the `Parser` trait originate mostly from that post.
// The remaining parsers and parser combinators are either based on
// https://github.com/archseer/snippets.nvim/blob/a583da6ef130d2a4888510afd8c4e5ffd62d0dce/lua/snippet/parser.lua#L5-L138
// or are novel.

// When a parser matches the input successfully, it returns `Ok((next_input, some_value))`
// where the type of the returned value depends on the parser. If the parser fails to match,
// it returns `Err(input)`.
type ParseResult<'a, Output> = Result<(&'a str, Output), &'a str>;

/// A parser or parser-combinator.
///
/// Parser-combinators compose multiple parsers together to parse input.
/// For example, two basic parsers (`&'static str`s) may be combined with
/// a parser-combinator like [or] to produce a new parser.
///
/// ```
/// use helix_parsec::{or, Parser};
/// let foo = "foo"; // matches "foo" literally
/// let bar = "bar"; // matches "bar" literally
/// let foo_or_bar = or(foo, bar); // matches either "foo" or "bar"
/// assert_eq!(Ok(("", "foo")), foo_or_bar.parse("foo"));
/// assert_eq!(Ok(("", "bar")), foo_or_bar.parse("bar"));
/// assert_eq!(Err("baz"), foo_or_bar.parse("baz"));
/// ```
pub trait Parser<'a> {
    type Output;

    fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output>;
}

// Most parser-combinators are written as higher-order functions which take some
// parser(s) as input and return a new parser: a function that takes input and returns
// a parse result. The underlying implementation of [Parser::parse] for these functions
// is simply application.
#[doc(hidden)]
impl<'a, F, T> Parser<'a> for F
where
    F: Fn(&'a str) -> ParseResult<T>,
{
    type Output = T;

    fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
        self(input)
    }
}

/// A parser which matches the string literal exactly.
///
/// This parser succeeds if the next characters in the input are equal to the given
/// string literal.
///
/// Note that [str::parse] interferes with calling [Parser::parse] on string literals
/// directly; this trait implementation works when used within any parser combinator
/// but does not work on its own. To call [Parser::parse] on a parser for a string
/// literal, use the [token] parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{or, Parser};
/// let parser = or("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("baz"), parser.parse("baz"));
/// ```
impl<'a> Parser<'a> for &'static str {
    type Output = &'a str;

    fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
        match input.get(0..self.len()) {
            Some(actual) if actual == *self => Ok((&input[self.len()..], &input[0..self.len()])),
            _ => Err(input),
        }
    }
}

// Parsers

/// A parser which matches the given string literally.
///
/// This function is a convenience for interpreting string literals as parsers
/// and is only necessary to avoid conflict with [str::parse]. See the documentation
/// for the `&'static str` implementation of [Parser].
///
/// # Examples
///
/// ```
/// use helix_parsec::{token, Parser};
/// let parser = token("foo");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Err("bar"), parser.parse("bar"));
/// ```
pub fn token<'a>(literal: &'static str) -> impl Parser<'a, Output = &'a str> {
    literal
}

/// A parser which matches all values until the specified pattern is found.
///
/// If the pattern is not found, this parser does not match. The input up to the
/// character which returns `true` is returned but not that character itself.
///
/// If the pattern function returns true on the first input character, this
/// parser fails.
///
/// # Examples
///
/// ```
/// use helix_parsec::{take_until, Parser};
/// let parser = take_until(|c| c == '.');
/// assert_eq!(Ok((".bar", "foo")), parser.parse("foo.bar"));
/// assert_eq!(Err(".foo"), parser.parse(".foo"));
/// assert_eq!(Err("foo"), parser.parse("foo"));
/// ```
pub fn take_until<'a, F>(pattern: F) -> impl Parser<'a, Output = &'a str>
where
    F: Fn(char) -> bool,
{
    move |input: &'a str| match input.find(&pattern) {
        Some(index) if index != 0 => Ok((&input[index..], &input[0..index])),
        _ => Err(input),
    }
}

/// A parser which matches all values until the specified pattern no longer match.
///
/// This parser only ever fails if the input has a length of zero.
///
/// # Examples
///
/// ```
/// use helix_parsec::{take_while, Parser};
/// let parser = take_while(|c| c == '1');
/// assert_eq!(Ok(("2", "11")), parser.parse("112"));
/// assert_eq!(Err("22"), parser.parse("22"));
/// ```
pub fn take_while<'a, F>(pattern: F) -> impl Parser<'a, Output = &'a str>
where
    F: Fn(char) -> bool,
{
    move |input: &'a str| match input
        .char_indices()
        .take_while(|(_p, c)| pattern(*c))
        .last()
    {
        Some((index, c)) => {
            let index = index + c.len_utf8();
            Ok((&input[index..], &input[0..index]))
        }
        _ => Err(input),
    }
}

// Variadic parser combinators

/// A parser combinator which matches a sequence of parsers in an all-or-nothing fashion.
///
/// The returned value is a tuple containing the outputs of all parsers in order. Each
/// parser in the sequence may be typed differently.
///
/// # Examples
///
/// ```
/// use helix_parsec::{seq, Parser};
/// let parser = seq!("<", "a", ">");
/// assert_eq!(Ok(("", ("<", "a", ">"))), parser.parse("<a>"));
/// assert_eq!(Err("<b>"), parser.parse("<b>"));
/// ```
#[macro_export]
macro_rules! seq {
    ($($parsers: expr),+ $(,)?) => {
        ($($parsers),+)
    }
}

// Seq is implemented using trait-implementations of Parser for various size tuples.
// This allows sequences to be typed heterogeneously.
macro_rules! seq_impl {
    ($($parser:ident),+) => {
        #[allow(non_snake_case)]
        impl<'a, $($parser),+> Parser<'a> for ($($parser),+)
        where
            $($parser: Parser<'a>),+
        {
            type Output = ($($parser::Output),+);

            fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
                let ($($parser),+) = self;
                seq_body_impl!(input, input, $($parser),+ ; )
            }
        }
    }
}

macro_rules! seq_body_impl {
    ($input:expr, $next_input:expr, $head:ident, $($tail:ident),+ ; $(,)? $($acc:ident),*) => {
        match $head.parse($next_input) {
            Ok((next_input, $head)) => seq_body_impl!($input, next_input, $($tail),+ ; $($acc),*, $head),
            Err(_) => Err($input),
        }
    };
    ($input:expr, $next_input:expr, $last:ident ; $(,)? $($acc:ident),*) => {
        match $last.parse($next_input) {
            Ok((next_input, last)) => Ok((next_input, ($($acc),+, last))),
            Err(_) => Err($input),
        }
    }
}

seq_impl!(A, B);
seq_impl!(A, B, C);
seq_impl!(A, B, C, D);
seq_impl!(A, B, C, D, E);
seq_impl!(A, B, C, D, E, F);
seq_impl!(A, B, C, D, E, F, G);
seq_impl!(A, B, C, D, E, F, G, H);
seq_impl!(A, B, C, D, E, F, G, H, I);
seq_impl!(A, B, C, D, E, F, G, H, I, J);

/// A parser combinator which chooses the first of the input parsers which matches
/// successfully.
///
/// All input parsers must have the same output type. This is a variadic form for [or].
///
/// # Examples
///
/// ```
/// use helix_parsec::{choice, or, Parser};
/// let parser = choice!("foo", "bar", "baz");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("quiz"), parser.parse("quiz"));
/// ```
#[macro_export]
macro_rules! choice {
    ($parser: expr $(,)?) => {
        $parser
    };
    ($parser: expr, $($rest: expr),+ $(,)?) => {
        or($parser, choice!($($rest),+))
    }
}

// Ordinary parser combinators

/// A parser combinator which takes a parser as input and maps the output using the
/// given transformation function.
///
/// This corresponds to [Result::map]. The value is only mapped if the input parser
/// matches against input.
///
/// # Examples
///
/// ```
/// use helix_parsec::{map, Parser};
/// let parser = map("123", |s| s.parse::<i32>().unwrap());
/// assert_eq!(Ok(("", 123)), parser.parse("123"));
/// assert_eq!(Err("abc"), parser.parse("abc"));
/// ```
pub fn map<'a, P, F, T>(parser: P, map_fn: F) -> impl Parser<'a, Output = T>
where
    P: Parser<'a>,
    F: Fn(P::Output) -> T,
{
    move |input| {
        parser
            .parse(input)
            .map(|(next_input, result)| (next_input, map_fn(result)))
    }
}

/// A parser combinator which succeeds if the given parser matches the input and
/// the given `filter_map_fn` returns `Some`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{filter_map, take_until, Parser};
/// let parser = filter_map(take_until(|c| c == '.'), |s| s.parse::<i32>().ok());
/// assert_eq!(Ok((".456", 123)), parser.parse("123.456"));
/// assert_eq!(Err("abc.def"), parser.parse("abc.def"));
/// ```
pub fn filter_map<'a, P, F, T>(parser: P, filter_map_fn: F) -> impl Parser<'a, Output = T>
where
    P: Parser<'a>,
    F: Fn(P::Output) -> Option<T>,
{
    move |input| match parser.parse(input) {
        Ok((next_input, value)) => match filter_map_fn(value) {
            Some(value) => Ok((next_input, value)),
            None => Err(input),
        },
        Err(_) => Err(input),
    }
}

/// A parser combinator which succeeds if the first given parser matches the input and
/// the second given parse also matches.
///
/// # Examples
///
/// ```
/// use helix_parsec::{reparse_as, take_until, one_or_more, Parser};
/// let parser = reparse_as(take_until(|c| c == '/'), one_or_more("a"));
/// assert_eq!(Ok(("/bb", vec!["a", "a"])), parser.parse("aa/bb"));
/// ```
pub fn reparse_as<'a, P1, P2, T>(parser1: P1, parser2: P2) -> impl Parser<'a, Output = T>
where
    P1: Parser<'a, Output = &'a str>,
    P2: Parser<'a, Output = T>,
{
    filter_map(parser1, move |str| {
        parser2.parse(str).map(|(_, value)| value).ok()
    })
}

/// A parser combinator which only matches the input when the predicate function
/// returns true.
///
/// # Examples
///
/// ```
/// use helix_parsec::{filter, take_until, Parser};
/// let parser = filter(take_until(|c| c == '.'), |s| s == &"123");
/// assert_eq!(Ok((".456", "123")), parser.parse("123.456"));
/// assert_eq!(Err("456.123"), parser.parse("456.123"));
/// ```
pub fn filter<'a, P, F, T>(parser: P, pred_fn: F) -> impl Parser<'a, Output = T>
where
    P: Parser<'a, Output = T>,
    F: Fn(&P::Output) -> bool,
{
    move |input| {
        if let Ok((next_input, value)) = parser.parse(input) {
            if pred_fn(&value) {
                return Ok((next_input, value));
            }
        }
        Err(input)
    }
}

/// A parser combinator which matches either of the input parsers.
///
/// Both parsers must have the same output type. For a variadic form which
/// can take any number of parsers, use `choice!`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{or, Parser};
/// let parser = or("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("baz"), parser.parse("baz"));
/// ```
pub fn or<'a, P1, P2, T>(parser1: P1, parser2: P2) -> impl Parser<'a, Output = T>
where
    P1: Parser<'a, Output = T>,
    P2: Parser<'a, Output = T>,
{
    move |input| match parser1.parse(input) {
        ok @ Ok(_) => ok,
        Err(_) => parser2.parse(input),
    }
}

/// A parser combinator which attempts to match the given parser, returning a
/// `None` output value if the parser does not match.
///
/// The parser produced with this combinator always succeeds. If the given parser
/// succeeds, `Some(value)` is returned where `value` is the output of the given
/// parser. Otherwise, `None`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{optional, Parser};
/// let parser = optional("foo");
/// assert_eq!(Ok(("bar", Some("foo"))), parser.parse("foobar"));
/// assert_eq!(Ok(("bar", None)), parser.parse("bar"));
/// ```
pub fn optional<'a, P, T>(parser: P) -> impl Parser<'a, Output = Option<T>>
where
    P: Parser<'a, Output = T>,
{
    move |input| match parser.parse(input) {
        Ok((next_input, value)) => Ok((next_input, Some(value))),
        Err(_) => Ok((input, None)),
    }
}

/// A parser combinator which runs the given parsers in sequence and returns the
/// value of `left` if both are matched.
///
/// This is useful for two-element sequences in which you only want the output
/// value of the `left` parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{left, Parser};
/// let parser = left("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foobar"));
/// ```
pub fn left<'a, L, R, T>(left: L, right: R) -> impl Parser<'a, Output = T>
where
    L: Parser<'a, Output = T>,
    R: Parser<'a>,
{
    map(seq!(left, right), |(left_value, _)| left_value)
}

/// A parser combinator which runs the given parsers in sequence and returns the
/// value of `right` if both are matched.
///
/// This is useful for two-element sequences in which you only want the output
/// value of the `right` parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{right, Parser};
/// let parser = right("foo", "bar");
/// assert_eq!(Ok(("", "bar")), parser.parse("foobar"));
/// ```
pub fn right<'a, L, R, T>(left: L, right: R) -> impl Parser<'a, Output = T>
where
    L: Parser<'a>,
    R: Parser<'a, Output = T>,
{
    map(seq!(left, right), |(_, right_value)| right_value)
}

/// A parser combinator which matches the given parser against the input zero or
/// more times.
///
/// This parser always succeeds and returns the empty Vec when it matched zero
/// times.
///
/// # Examples
///
/// ```
/// use helix_parsec::{zero_or_more, Parser};
/// let parser = zero_or_more("a");
/// assert_eq!(Ok(("", vec![])), parser.parse(""));
/// assert_eq!(Ok(("", vec!["a"])), parser.parse("a"));
/// assert_eq!(Ok(("", vec!["a", "a"])), parser.parse("aa"));
/// assert_eq!(Ok(("bb", vec![])), parser.parse("bb"));
/// ```
pub fn zero_or_more<'a, P, T>(parser: P) -> impl Parser<'a, Output = Vec<T>>
where
    P: Parser<'a, Output = T>,
{
    move |mut input| {
        let mut values = Vec::new();

        while let Ok((next_input, value)) = parser.parse(input) {
            input = next_input;
            values.push(value);
        }

        Ok((input, values))
    }
}

/// A parser combinator which matches the given parser against the input one or
/// more times.
///
/// This parser combinator acts the same as [zero_or_more] but must match at
/// least once.
///
/// # Examples
///
/// ```
/// use helix_parsec::{one_or_more, Parser};
/// let parser = one_or_more("a");
/// assert_eq!(Err(""), parser.parse(""));
/// assert_eq!(Ok(("", vec!["a"])), parser.parse("a"));
/// assert_eq!(Ok(("", vec!["a", "a"])), parser.parse("aa"));
/// assert_eq!(Err("bb"), parser.parse("bb"));
/// ```
pub fn one_or_more<'a, P, T>(parser: P) -> impl Parser<'a, Output = Vec<T>>
where
    P: Parser<'a, Output = T>,
{
    move |mut input| {
        let mut values = Vec::new();

        match parser.parse(input) {
            Ok((next_input, value)) => {
                input = next_input;
                values.push(value);
            }
            Err(err) => return Err(err),
        }

        while let Ok((next_input, value)) = parser.parse(input) {
            input = next_input;
            values.push(value);
        }

        Ok((input, values))
    }
}

/// A parser combinator which matches one or more instances of the given parser
/// interspersed with the separator parser.
///
/// Output values of the separator parser are discarded.
///
/// This is typically used to parse function arguments or list items.
///
/// # Examples
///
/// ```rust
/// use helix_parsec::{sep, Parser};
/// let parser = sep("a", ",");
/// assert_eq!(Ok(("", vec!["a", "a", "a"])), parser.parse("a,a,a"));
/// ```
pub fn sep<'a, P, S, T>(parser: P, separator: S) -> impl Parser<'a, Output = Vec<T>>
where
    P: Parser<'a, Output = T>,
    S: Parser<'a>,
{
    move |mut input| {
        let mut values = Vec::new();

        match parser.parse(input) {
            Ok((next_input, value)) => {
                input = next_input;
                values.push(value);
            }
            Err(err) => return Err(err),
        }

        loop {
            match separator.parse(input) {
                Ok((next_input, _)) => input = next_input,
                Err(_) => break,
            }

            match parser.parse(input) {
                Ok((next_input, value)) => {
                    input = next_input;
                    values.push(value);
                }
                Err(_) => break,
            }
        }

        Ok((input, values))
    }
}