1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// Each component declares it's own size constraints and gets fitted based on it's parent.
// Q: how does this work with popups?
// cursive does compositor.screen_mut().add_layer_at(pos::absolute(x, y), <component>)
use crossterm::event::Event;
use helix_core::Position;
use tui::{buffer::Buffer as Surface, layout::Rect, terminal::CursorKind};
pub type Callback = Box<dyn FnOnce(&mut Compositor)>;
// --> EventResult should have a callback that takes a context with methods like .popup(),
// .prompt() etc. That way we can abstract it from the renderer.
// Q: How does this interact with popups where we need to be able to specify the rendering of the
// popup?
// A: It could just take a textarea.
//
// If Compositor was specified in the callback that's then problematic because of
// Cursive-inspired
pub enum EventResult {
Ignored,
Consumed(Option<Callback>),
}
use helix_view::Editor;
use crate::application::LspCallbacks;
pub struct Context<'a> {
pub editor: &'a mut Editor,
pub scroll: Option<usize>,
pub callbacks: &'a mut LspCallbacks,
}
pub trait Component: Any + AnyComponent {
/// Process input events, return true if handled.
fn handle_event(&mut self, event: Event, ctx: &mut Context) -> EventResult {
EventResult::Ignored
}
// , args: ()
/// Should redraw? Useful for saving redraw cycles if we know component didn't change.
fn should_update(&self) -> bool {
true
}
/// Render the component onto the provided surface.
fn render(&self, area: Rect, frame: &mut Surface, ctx: &mut Context);
/// Get cursor position and cursor kind.
fn cursor(&self, area: Rect, ctx: &Editor) -> (Option<Position>, CursorKind) {
(None, CursorKind::Hidden)
}
/// May be used by the parent component to compute the child area.
/// viewport is the maximum allowed area, and the child should stay within those bounds.
fn required_size(&mut self, viewport: (u16, u16)) -> Option<(u16, u16)> {
// TODO: for scrolling, the scroll wrapper should place a size + offset on the Context
// that way render can use it
None
}
fn type_name(&self) -> &'static str {
std::any::type_name::<Self>()
}
}
use anyhow::Error;
use std::io::stdout;
use tui::backend::CrosstermBackend;
type Terminal = tui::terminal::Terminal<CrosstermBackend<std::io::Stdout>>;
pub struct Compositor {
layers: Vec<Box<dyn Component>>,
terminal: Terminal,
}
impl Compositor {
pub fn new() -> Result<Self, Error> {
let backend = CrosstermBackend::new(stdout());
let mut terminal = Terminal::new(backend)?;
Ok(Self {
layers: Vec::new(),
terminal,
})
}
pub fn size(&self) -> Rect {
self.terminal.size().expect("couldn't get terminal size")
}
pub fn resize(&mut self, width: u16, height: u16) {
self.terminal
.resize(Rect::new(0, 0, width, height))
.expect("Unable to resize terminal")
}
pub fn push(&mut self, mut layer: Box<dyn Component>) {
let size = self.size();
// trigger required_size on init
layer.required_size((size.width, size.height));
self.layers.push(layer);
}
pub fn pop(&mut self) {
self.layers.pop();
}
pub fn handle_event(&mut self, event: Event, cx: &mut Context) -> bool {
// propagate events through the layers until we either find a layer that consumes it or we
// run out of layers (event bubbling)
for layer in self.layers.iter_mut().rev() {
match layer.handle_event(event, cx) {
EventResult::Consumed(Some(callback)) => {
callback(self);
return true;
}
EventResult::Consumed(None) => return true,
EventResult::Ignored => false,
};
}
false
}
pub fn render(&mut self, cx: &mut Context) {
let area = self
.terminal
.autoresize()
.expect("Unable to determine terminal size");
// TODO: need to recalculate view tree if necessary
let surface = self.terminal.current_buffer_mut();
let area = *surface.area();
for layer in &self.layers {
layer.render(area, surface, cx)
}
let (pos, kind) = self.cursor(area, cx.editor);
let pos = pos.map(|pos| (pos.col as u16, pos.row as u16));
self.terminal.draw(pos, kind);
}
pub fn cursor(&self, area: Rect, editor: &Editor) -> (Option<Position>, CursorKind) {
for layer in self.layers.iter().rev() {
if let (Some(pos), kind) = layer.cursor(area, editor) {
return (Some(pos), kind);
}
}
(None, CursorKind::Hidden)
}
pub fn find(&mut self, type_name: &str) -> Option<&mut dyn Component> {
self.layers
.iter_mut()
.find(|component| component.type_name() == type_name)
.map(|component| component.as_mut())
}
}
// View casting, taken straight from Cursive
use std::any::Any;
/// A view that can be downcasted to its concrete type.
///
/// This trait is automatically implemented for any `T: Component`.
pub trait AnyComponent {
/// Downcast self to a `Any`.
fn as_any(&self) -> &dyn Any;
/// Downcast self to a mutable `Any`.
fn as_any_mut(&mut self) -> &mut dyn Any;
/// Returns a boxed any from a boxed self.
///
/// Can be used before `Box::downcast()`.
//
// # Examples
//
// ```rust
// let boxed: Box<Component> = Box::new(TextComponent::new("text"));
// let text: Box<TextComponent> = boxed.as_boxed_any().downcast().unwrap();
// ```
fn as_boxed_any(self: Box<Self>) -> Box<dyn Any>;
}
impl<T: Component> AnyComponent for T {
/// Downcast self to a `Any`.
fn as_any(&self) -> &dyn Any {
self
}
/// Downcast self to a mutable `Any`.
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
fn as_boxed_any(self: Box<Self>) -> Box<dyn Any> {
self
}
}
impl dyn AnyComponent {
/// Attempts to downcast `self` to a concrete type.
pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
self.as_any().downcast_ref()
}
/// Attempts to downcast `self` to a concrete type.
pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> {
self.as_any_mut().downcast_mut()
}
/// Attempts to downcast `Box<Self>` to a concrete type.
pub fn downcast<T: Any>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
// Do the check here + unwrap, so the error
// value is `Self` and not `dyn Any`.
if self.as_any().is::<T>() {
Ok(self.as_boxed_any().downcast().unwrap())
} else {
Err(self)
}
}
/// Checks if this view is of type `T`.
pub fn is<T: Any>(&mut self) -> bool {
self.as_any().is::<T>()
}
}
|