1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
use crate::View;
use slotmap::{DefaultKey as Key, HopSlotMap};
use tui::layout::Rect;
// the dimensions are recomputed on windo resize/tree change.
//
pub struct Tree {
root: Key,
// (container, index inside the container)
current: (Key, usize),
pub focus: Key,
fullscreen: bool,
area: Rect,
nodes: HopSlotMap<Key, Node>,
// used for traversals
stack: Vec<(Key, Rect)>,
}
pub enum Node {
View(Box<View>),
Container(Box<Container>),
}
impl Node {
pub fn container() -> Self {
Self::Container(Box::new(Container::new()))
}
pub fn view(view: View) -> Self {
Self::View(Box::new(view))
}
}
// TODO: screen coord to container + container coordinate helpers
pub enum Layout {
Horizontal,
Vertical,
// could explore stacked/tabbed
}
pub struct Container {
layout: Layout,
children: Vec<Key>,
area: Rect,
}
impl Container {
pub fn new() -> Self {
Self {
layout: Layout::Horizontal,
children: Vec::new(),
area: Rect::default(),
}
}
}
impl Default for Container {
fn default() -> Self {
Self::new()
}
}
impl Tree {
pub fn new(area: Rect) -> Self {
let root = Node::container();
let mut nodes = HopSlotMap::new();
let root = nodes.insert(root);
Self {
root,
current: (root, 0),
focus: Key::default(),
fullscreen: false,
area,
nodes,
stack: Vec::new(),
}
}
pub fn insert(&mut self, view: View) -> Key {
let node = self.nodes.insert(Node::view(view));
let (id, pos) = self.current;
let container = match &mut self.nodes[id] {
Node::Container(container) => container,
_ => unreachable!(),
};
// insert node after the current item if there is children already
let pos = if container.children.is_empty() {
pos
} else {
pos + 1
};
container.children.insert(pos, node);
// focus the new node
self.current = (id, pos);
self.focus = node;
// recalculate all the sizes
self.recalculate();
node
}
pub fn views(&mut self) -> impl Iterator<Item = (&mut View, bool)> {
let focus = self.focus;
self.nodes
.iter_mut()
.filter_map(move |(key, node)| match node {
Node::View(view) => Some((view.as_mut(), focus == key)),
Node::Container(..) => None,
})
}
pub fn get(&self, index: Key) -> &View {
match &self.nodes[index] {
Node::View(view) => view,
_ => unreachable!(),
}
}
pub fn get_mut(&mut self, index: Key) -> &mut View {
match &mut self.nodes[index] {
Node::View(view) => view,
_ => unreachable!(),
}
}
pub fn resize(&mut self, area: Rect) {
self.area = area;
self.recalculate();
}
pub fn recalculate(&mut self) {
self.stack.push((self.root, self.area));
// take the area
// fetch the node
// a) node is view, give it whole area
// b) node is container, calculate areas for each child and push them on the stack
while let Some((key, area)) = self.stack.pop() {
let node = &mut self.nodes[key];
match node {
Node::View(view) => {
// debug!!("setting view area {:?}", area);
view.area = area;
} // TODO: call f()
Node::Container(container) => {
// debug!!("setting container area {:?}", area);
container.area = area;
match container.layout {
Layout::Vertical => {
let len = container.children.len();
let height = area.height / len as u16;
let mut child_y = area.y;
for (i, child) in container.children.iter().enumerate() {
let mut area = Rect::new(
container.area.x,
child_y,
container.area.width,
height,
);
child_y += height;
// last child takes the remaining width because we can get uneven
// space from rounding
if i == len - 1 {
area.height = container.area.y + container.area.height - area.y;
}
self.stack.push((*child, area));
}
}
Layout::Horizontal => {
let len = container.children.len();
let width = area.width / len as u16;
let mut child_x = area.x;
for (i, child) in container.children.iter().enumerate() {
let mut area = Rect::new(
child_x,
container.area.y,
width,
container.area.height,
);
child_x += width;
// last child takes the remaining width because we can get uneven
// space from rounding
if i == len - 1 {
area.width = container.area.x + container.area.width - area.x;
}
self.stack.push((*child, area));
}
}
}
}
}
}
}
pub fn traverse(&self) -> Traverse {
Traverse::new(self)
}
pub fn focus_next(&mut self) {
// This function is very dumb, but that's because we don't store any parent links.
// (we'd be able to go parent.next_sibling() recursively until we find something)
// For now that's okay though, since it's unlikely you'll be able to open a large enough
// number of splits to notice.
let iter = self.traverse();
let mut iter = iter.skip_while(|&(key, _view)| key != self.focus);
iter.next(); // take the focused value
match iter.next() {
Some((key, _)) => {
self.focus = key;
}
None => {
// extremely crude, take the first item again
let (key, _) = self.traverse().next().unwrap();
self.focus = key;
}
}
}
}
pub struct Traverse<'a> {
tree: &'a Tree,
stack: Vec<Key>, // TODO: reuse the one we use on update
}
impl<'a> Traverse<'a> {
fn new(tree: &'a Tree) -> Self {
Self {
tree,
stack: vec![tree.root],
}
}
}
impl<'a> Iterator for Traverse<'a> {
type Item = (Key, &'a View);
fn next(&mut self) -> Option<Self::Item> {
loop {
let key = self.stack.pop()?;
let node = &self.tree.nodes[key];
match node {
Node::View(view) => return Some((key, view)),
Node::Container(container) => {
self.stack.extend(container.children.iter().rev());
}
}
}
}
}
|