1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
use crate::{graphics::Rect, View, ViewId};
use slotmap::HopSlotMap;
// the dimensions are recomputed on window resize/tree change.
//
#[derive(Debug)]
pub struct Tree {
root: ViewId,
// (container, index inside the container)
pub focus: ViewId,
// fullscreen: bool,
area: Rect,
nodes: HopSlotMap<ViewId, Node>,
// used for traversals
stack: Vec<(ViewId, Rect)>,
}
#[derive(Debug)]
pub struct Node {
parent: ViewId,
content: Content,
}
#[derive(Debug)]
pub enum Content {
View(Box<View>),
Container(Box<Container>),
}
impl Node {
pub fn container(layout: Layout) -> Self {
Self {
parent: ViewId::default(),
content: Content::Container(Box::new(Container::new(layout))),
}
}
pub fn view(view: View) -> Self {
Self {
parent: ViewId::default(),
content: Content::View(Box::new(view)),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Layout {
Horizontal,
Vertical,
// could explore stacked/tabbed
}
#[derive(Debug, Clone, Copy)]
pub enum Direction {
Up,
Down,
Left,
Right,
}
#[derive(Debug)]
pub struct Container {
layout: Layout,
children: Vec<ViewId>,
area: Rect,
}
impl Container {
pub fn new(layout: Layout) -> Self {
Self {
layout,
children: Vec::new(),
area: Rect::default(),
}
}
}
impl Default for Container {
fn default() -> Self {
Self::new(Layout::Vertical)
}
}
impl Tree {
pub fn new(area: Rect) -> Self {
let root = Node::container(Layout::Vertical);
let mut nodes = HopSlotMap::with_key();
let root = nodes.insert(root);
// root is it's own parent
nodes[root].parent = root;
Self {
root,
focus: root,
// fullscreen: false,
area,
nodes,
stack: Vec::new(),
}
}
pub fn insert(&mut self, view: View) -> ViewId {
let focus = self.focus;
let parent = self.nodes[focus].parent;
let mut node = Node::view(view);
node.parent = parent;
let node = self.nodes.insert(node);
self.get_mut(node).id = node;
let container = match &mut self.nodes[parent] {
Node {
content: Content::Container(container),
..
} => container,
_ => unreachable!(),
};
// insert node after the current item if there is children already
let pos = if container.children.is_empty() {
0
} else {
let pos = container
.children
.iter()
.position(|&child| child == focus)
.unwrap();
pos + 1
};
container.children.insert(pos, node);
// focus the new node
self.focus = node;
// recalculate all the sizes
self.recalculate();
node
}
pub fn split(&mut self, view: View, layout: Layout) -> ViewId {
let focus = self.focus;
let parent = self.nodes[focus].parent;
let node = Node::view(view);
let node = self.nodes.insert(node);
self.get_mut(node).id = node;
let container = match &mut self.nodes[parent] {
Node {
content: Content::Container(container),
..
} => container,
_ => unreachable!(),
};
if container.layout == layout {
// insert node after the current item if there is children already
let pos = if container.children.is_empty() {
0
} else {
let pos = container
.children
.iter()
.position(|&child| child == focus)
.unwrap();
pos + 1
};
container.children.insert(pos, node);
self.nodes[node].parent = parent;
} else {
let mut split = Node::container(layout);
split.parent = parent;
let split = self.nodes.insert(split);
let container = match &mut self.nodes[split] {
Node {
content: Content::Container(container),
..
} => container,
_ => unreachable!(),
};
container.children.push(focus);
container.children.push(node);
self.nodes[focus].parent = split;
self.nodes[node].parent = split;
let container = match &mut self.nodes[parent] {
Node {
content: Content::Container(container),
..
} => container,
_ => unreachable!(),
};
let pos = container
.children
.iter()
.position(|&child| child == focus)
.unwrap();
// replace focus on parent with split
container.children[pos] = split;
}
// focus the new node
self.focus = node;
// recalculate all the sizes
self.recalculate();
node
}
pub fn remove(&mut self, index: ViewId) {
let mut stack = Vec::new();
if self.focus == index {
// focus on something else
self.focus_next();
}
stack.push(index);
while let Some(index) = stack.pop() {
let parent_id = self.nodes[index].parent;
if let Node {
content: Content::Container(container),
..
} = &mut self.nodes[parent_id]
{
if let Some(pos) = container.children.iter().position(|&child| child == index) {
container.children.remove(pos);
// TODO: if container now only has one child, remove it and place child in parent
if container.children.is_empty() && parent_id != self.root {
// if container now empty, remove it
stack.push(parent_id);
}
}
}
self.nodes.remove(index);
}
self.recalculate()
}
pub fn views(&self) -> impl Iterator<Item = (&View, bool)> {
let focus = self.focus;
self.nodes.iter().filter_map(move |(key, node)| match node {
Node {
content: Content::View(view),
..
} => Some((view.as_ref(), focus == key)),
_ => None,
})
}
pub fn views_mut(&mut self) -> impl Iterator<Item = (&mut View, bool)> {
let focus = self.focus;
self.nodes
.iter_mut()
.filter_map(move |(key, node)| match node {
Node {
content: Content::View(view),
..
} => Some((view.as_mut(), focus == key)),
_ => None,
})
}
pub fn get(&self, index: ViewId) -> &View {
match &self.nodes[index] {
Node {
content: Content::View(view),
..
} => view,
_ => unreachable!(),
}
}
pub fn get_mut(&mut self, index: ViewId) -> &mut View {
match &mut self.nodes[index] {
Node {
content: Content::View(view),
..
} => view,
_ => unreachable!(),
}
}
pub fn is_empty(&self) -> bool {
match &self.nodes[self.root] {
Node {
content: Content::Container(container),
..
} => container.children.is_empty(),
_ => unreachable!(),
}
}
pub fn resize(&mut self, area: Rect) -> bool {
if self.area != area {
self.area = area;
self.recalculate();
return true;
}
false
}
pub fn recalculate(&mut self) {
if self.is_empty() {
// There are no more views, so the tree should focus itself again.
self.focus = self.root;
return;
}
self.stack.push((self.root, self.area));
// take the area
// fetch the node
// a) node is view, give it whole area
// b) node is container, calculate areas for each child and push them on the stack
while let Some((key, area)) = self.stack.pop() {
let node = &mut self.nodes[key];
match &mut node.content {
Content::View(view) => {
// debug!!("setting view area {:?}", area);
view.area = area;
} // TODO: call f()
Content::Container(container) => {
// debug!!("setting container area {:?}", area);
container.area = area;
match container.layout {
Layout::Horizontal => {
let len = container.children.len();
let height = area.height / len as u16;
let mut child_y = area.y;
for (i, child) in container.children.iter().enumerate() {
let mut area = Rect::new(
container.area.x,
child_y,
container.area.width,
height,
);
child_y += height;
// last child takes the remaining width because we can get uneven
// space from rounding
if i == len - 1 {
area.height = container.area.y + container.area.height - area.y;
}
self.stack.push((*child, area));
}
}
Layout::Vertical => {
let len = container.children.len();
let width = area.width / len as u16;
let inner_gap = 1u16;
// let total_gap = inner_gap * (len as u16 - 1);
let mut child_x = area.x;
for (i, child) in container.children.iter().enumerate() {
let mut area = Rect::new(
child_x,
container.area.y,
width,
container.area.height,
);
child_x += width + inner_gap;
// last child takes the remaining width because we can get uneven
// space from rounding
if i == len - 1 {
area.width = container.area.x + container.area.width - area.x;
}
self.stack.push((*child, area));
}
}
}
}
}
}
}
pub fn traverse(&self) -> Traverse {
Traverse::new(self)
}
// Finds the split in the given direction if it exists
pub fn find_split_in_direction(&self, id: ViewId, direction: Direction) -> Option<ViewId> {
let parent = self.nodes[id].parent;
// Base case, we found the root of the tree
if parent == id {
return None;
}
// Parent must always be a container
let parent_container = match &self.nodes[parent].content {
Content::Container(container) => container,
Content::View(_) => unreachable!(),
};
match (direction, parent_container.layout) {
(Direction::Up, Layout::Vertical)
| (Direction::Left, Layout::Horizontal)
| (Direction::Right, Layout::Horizontal)
| (Direction::Down, Layout::Vertical) => {
// The desired direction of movement is not possible within
// the parent container so the search must continue closer to
// the root of the split tree.
self.find_split_in_direction(parent, direction)
}
(Direction::Up, Layout::Horizontal)
| (Direction::Down, Layout::Horizontal)
| (Direction::Left, Layout::Vertical)
| (Direction::Right, Layout::Vertical) => {
// It's possible to move in the desired direction within
// the parent container so an attempt is made to find the
// correct child.
match self.find_child(id, &parent_container.children, direction) {
// Child is found, search is ended
Some(id) => Some(id),
// A child is not found. This could be because of either two scenarios
// 1. Its not possible to move in the desired direction, and search should end
// 2. A layout like the following with focus at X and desired direction Right
// | _ | x | |
// | _ _ _ | |
// | _ _ _ | |
// The container containing X ends at X so no rightward movement is possible
// however there still exists another view/container to the right that hasn't
// been explored. Thus another search is done here in the parent container
// before concluding it's not possible to move in the desired direction.
None => self.find_split_in_direction(parent, direction),
}
}
}
}
fn find_child(&self, id: ViewId, children: &[ViewId], direction: Direction) -> Option<ViewId> {
let mut child_id = match direction {
// index wise in the child list the Up and Left represents a -1
// thus reversed iterator.
Direction::Up | Direction::Left => children
.iter()
.rev()
.skip_while(|i| **i != id)
.copied()
.nth(1)?,
// Down and Right => +1 index wise in the child list
Direction::Down | Direction::Right => {
children.iter().skip_while(|i| **i != id).copied().nth(1)?
}
};
let (current_x, current_y) = match &self.nodes[self.focus].content {
Content::View(current_view) => (current_view.area.left(), current_view.area.top()),
Content::Container(_) => unreachable!(),
};
// If the child is a container the search finds the closest container child
// visually based on screen location.
while let Content::Container(container) = &self.nodes[child_id].content {
match (direction, container.layout) {
(_, Layout::Vertical) => {
// find closest split based on x because y is irrelevant
// in a vertical container (and already correct based on previous search)
child_id = *container.children.iter().min_by_key(|id| {
let x = match &self.nodes[**id].content {
Content::View(view) => view.inner_area().left(),
Content::Container(container) => container.area.left(),
};
(current_x as i16 - x as i16).abs()
})?;
}
(_, Layout::Horizontal) => {
// find closest split based on y because x is irrelevant
// in a horizontal container (and already correct based on previous search)
child_id = *container.children.iter().min_by_key(|id| {
let y = match &self.nodes[**id].content {
Content::View(view) => view.inner_area().top(),
Content::Container(container) => container.area.top(),
};
(current_y as i16 - y as i16).abs()
})?;
}
}
}
Some(child_id)
}
pub fn focus_direction(&mut self, direction: Direction) {
if let Some(id) = self.find_split_in_direction(self.focus, direction) {
self.focus = id;
}
}
pub fn focus_next(&mut self) {
// This function is very dumb, but that's because we don't store any parent links.
// (we'd be able to go parent.next_sibling() recursively until we find something)
// For now that's okay though, since it's unlikely you'll be able to open a large enough
// number of splits to notice.
let mut views = self
.traverse()
.skip_while(|&(id, _view)| id != self.focus)
.skip(1); // Skip focused value
if let Some((id, _)) = views.next() {
self.focus = id;
} else {
// extremely crude, take the first item again
let (key, _) = self.traverse().next().unwrap();
self.focus = key;
}
}
pub fn transpose(&mut self) {
let focus = self.focus;
let parent = self.nodes[focus].parent;
if let Content::Container(container) = &mut self.nodes[parent].content {
container.layout = match container.layout {
Layout::Vertical => Layout::Horizontal,
Layout::Horizontal => Layout::Vertical,
};
self.recalculate();
}
}
pub fn swap_split_in_direction(&mut self, direction: Direction) {
if let Some(id) = self.find_split_in_direction(self.focus, direction) {
if let Some([focused, target]) = self.nodes.get_disjoint_mut([self.focus, id]) {
match (&mut focused.content, &mut target.content) {
(Content::View(focused), Content::View(target)) => {
std::mem::swap(&mut focused.doc, &mut target.doc);
std::mem::swap(&mut focused.id, &mut target.id);
self.focus = id;
}
// self.focus always points to a view which has a content of Content::View
// and find_split_in_direction() only returns a view which has content of
// Content::View.
_ => unreachable!(),
}
}
}
}
pub fn area(&self) -> Rect {
self.area
}
}
#[derive(Debug)]
pub struct Traverse<'a> {
tree: &'a Tree,
stack: Vec<ViewId>, // TODO: reuse the one we use on update
}
impl<'a> Traverse<'a> {
fn new(tree: &'a Tree) -> Self {
Self {
tree,
stack: vec![tree.root],
}
}
}
impl<'a> Iterator for Traverse<'a> {
type Item = (ViewId, &'a View);
fn next(&mut self) -> Option<Self::Item> {
loop {
let key = self.stack.pop()?;
let node = &self.tree.nodes[key];
match &node.content {
Content::View(view) => return Some((key, view)),
Content::Container(container) => {
self.stack.extend(container.children.iter().rev());
}
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::editor::GutterType;
use crate::DocumentId;
#[test]
fn find_split_in_direction() {
let mut tree = Tree::new(Rect {
x: 0,
y: 0,
width: 180,
height: 80,
});
let mut view = View::new(
DocumentId::default(),
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
view.area = Rect::new(0, 0, 180, 80);
tree.insert(view);
let l0 = tree.focus;
let view = View::new(
DocumentId::default(),
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Vertical);
let r0 = tree.focus;
tree.focus = l0;
let view = View::new(
DocumentId::default(),
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Horizontal);
let l1 = tree.focus;
tree.focus = l0;
let view = View::new(
DocumentId::default(),
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Vertical);
let l2 = tree.focus;
// Tree in test
// | L0 | L2 | |
// | L1 | R0 |
tree.focus = l2;
assert_eq!(Some(l0), tree.find_split_in_direction(l2, Direction::Left));
assert_eq!(Some(l1), tree.find_split_in_direction(l2, Direction::Down));
assert_eq!(Some(r0), tree.find_split_in_direction(l2, Direction::Right));
assert_eq!(None, tree.find_split_in_direction(l2, Direction::Up));
tree.focus = l1;
assert_eq!(None, tree.find_split_in_direction(l1, Direction::Left));
assert_eq!(None, tree.find_split_in_direction(l1, Direction::Down));
assert_eq!(Some(r0), tree.find_split_in_direction(l1, Direction::Right));
assert_eq!(Some(l0), tree.find_split_in_direction(l1, Direction::Up));
tree.focus = l0;
assert_eq!(None, tree.find_split_in_direction(l0, Direction::Left));
assert_eq!(Some(l1), tree.find_split_in_direction(l0, Direction::Down));
assert_eq!(Some(l2), tree.find_split_in_direction(l0, Direction::Right));
assert_eq!(None, tree.find_split_in_direction(l0, Direction::Up));
tree.focus = r0;
assert_eq!(Some(l2), tree.find_split_in_direction(r0, Direction::Left));
assert_eq!(None, tree.find_split_in_direction(r0, Direction::Down));
assert_eq!(None, tree.find_split_in_direction(r0, Direction::Right));
assert_eq!(None, tree.find_split_in_direction(r0, Direction::Up));
}
#[test]
fn swap_split_in_direction() {
let mut tree = Tree::new(Rect {
x: 0,
y: 0,
width: 180,
height: 80,
});
let doc_l0 = DocumentId::default();
let mut view = View::new(
doc_l0,
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
view.area = Rect::new(0, 0, 180, 80);
tree.insert(view);
let l0 = tree.focus;
let doc_r0 = DocumentId::default();
let view = View::new(
doc_r0,
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Vertical);
let r0 = tree.focus;
tree.focus = l0;
let doc_l1 = DocumentId::default();
let view = View::new(
doc_l1,
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Horizontal);
let l1 = tree.focus;
tree.focus = l0;
let doc_l2 = DocumentId::default();
let view = View::new(
doc_l2,
vec![GutterType::Diagnostics, GutterType::LineNumbers],
);
tree.split(view, Layout::Vertical);
let l2 = tree.focus;
// Views in test
// | L0 | L2 | |
// | L1 | R0 |
// Document IDs in test
// | l0 | l2 | |
// | l1 | r0 |
fn doc_id(tree: &Tree, view_id: ViewId) -> Option<DocumentId> {
if let Content::View(view) = &tree.nodes[view_id].content {
Some(view.doc)
} else {
None
}
}
tree.focus = l0;
// `*` marks the view in focus from view table (here L0)
// | l0* | l2 | |
// | l1 | r0 |
tree.swap_split_in_direction(Direction::Down);
// | l1 | l2 | |
// | l0* | r0 |
assert_eq!(tree.focus, l1);
assert_eq!(doc_id(&tree, l0), Some(doc_l1));
assert_eq!(doc_id(&tree, l1), Some(doc_l0));
assert_eq!(doc_id(&tree, l2), Some(doc_l2));
assert_eq!(doc_id(&tree, r0), Some(doc_r0));
tree.swap_split_in_direction(Direction::Right);
// | l1 | l2 | |
// | r0 | l0* |
assert_eq!(tree.focus, r0);
assert_eq!(doc_id(&tree, l0), Some(doc_l1));
assert_eq!(doc_id(&tree, l1), Some(doc_r0));
assert_eq!(doc_id(&tree, l2), Some(doc_l2));
assert_eq!(doc_id(&tree, r0), Some(doc_l0));
// cannot swap, nothing changes
tree.swap_split_in_direction(Direction::Up);
// | l1 | l2 | |
// | r0 | l0* |
assert_eq!(tree.focus, r0);
assert_eq!(doc_id(&tree, l0), Some(doc_l1));
assert_eq!(doc_id(&tree, l1), Some(doc_r0));
assert_eq!(doc_id(&tree, l2), Some(doc_l2));
assert_eq!(doc_id(&tree, r0), Some(doc_l0));
// cannot swap, nothing changes
tree.swap_split_in_direction(Direction::Down);
// | l1 | l2 | |
// | r0 | l0* |
assert_eq!(tree.focus, r0);
assert_eq!(doc_id(&tree, l0), Some(doc_l1));
assert_eq!(doc_id(&tree, l1), Some(doc_r0));
assert_eq!(doc_id(&tree, l2), Some(doc_l2));
assert_eq!(doc_id(&tree, r0), Some(doc_l0));
tree.focus = l2;
// | l1 | l2* | |
// | r0 | l0 |
tree.swap_split_in_direction(Direction::Down);
// | l1 | r0 | |
// | l2* | l0 |
assert_eq!(tree.focus, l1);
assert_eq!(doc_id(&tree, l0), Some(doc_l1));
assert_eq!(doc_id(&tree, l1), Some(doc_l2));
assert_eq!(doc_id(&tree, l2), Some(doc_r0));
assert_eq!(doc_id(&tree, r0), Some(doc_l0));
tree.swap_split_in_direction(Direction::Up);
// | l2* | r0 | |
// | l1 | l0 |
assert_eq!(tree.focus, l0);
assert_eq!(doc_id(&tree, l0), Some(doc_l2));
assert_eq!(doc_id(&tree, l1), Some(doc_l1));
assert_eq!(doc_id(&tree, l2), Some(doc_r0));
assert_eq!(doc_id(&tree, r0), Some(doc_l0));
}
}
|