1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
use crate::View;
use slotmap::{DefaultKey as Key, HopSlotMap};
use tui::layout::Rect;
// the dimensions are recomputed on windo resize/tree change.
//
pub struct Tree {
root: Key,
// (container, index inside the container)
current: (Key, usize),
pub focus: Key,
fullscreen: bool,
area: Rect,
nodes: HopSlotMap<Key, Node>,
// used for traversals
stack: Vec<(Key, Rect)>,
}
pub enum Node {
View(Box<View>),
Container(Box<Container>),
}
impl Node {
pub fn container(area: Rect) -> Self {
Self::Container(Box::new(Container::new()))
}
pub fn view(view: View) -> Self {
Self::View(Box::new(view))
}
}
// TODO: screen coord to container + container coordinate helpers
pub enum Layout {
Horizontal,
Vertical,
// could explore stacked/tabbed
}
pub struct Container {
layout: Layout,
children: Vec<Key>,
area: Rect,
}
impl Container {
pub fn new() -> Self {
Self {
layout: Layout::Horizontal,
children: Vec::new(),
area: Rect::default(),
}
}
}
impl Tree {
pub fn new(area: Rect) -> Self {
let root = Node::container(area);
let mut nodes = HopSlotMap::new();
let root = nodes.insert(root);
Self {
root,
current: (root, 0),
focus: Key::default(),
fullscreen: false,
area,
nodes,
stack: Vec::new(),
}
}
pub fn insert(&mut self, view: View) -> Key {
let node = self.nodes.insert(Node::view(view));
let (id, pos) = self.current;
let container = match &mut self.nodes[id] {
Node::Container(container) => container,
_ => unreachable!(),
};
// insert node after the current item if there is children already
let pos = if container.children.is_empty() {
pos
} else {
pos + 1
};
container.children.insert(pos, node);
// focus the new node
self.current = (id, pos);
self.focus = node;
// recalculate all the sizes
self.traverse();
node
}
pub fn views(&mut self) -> impl Iterator<Item = (&mut View, bool)> {
let focus = self.focus;
self.nodes
.iter_mut()
.filter_map(move |(key, node)| match node {
Node::View(view) => Some((view.as_mut(), focus == key)),
Node::Container(..) => None,
})
}
pub fn get(&self, index: Key) -> &View {
match &self.nodes[index] {
Node::View(view) => view,
_ => unreachable!(),
}
}
pub fn get_mut(&mut self, index: Key) -> &mut View {
match &mut self.nodes[index] {
Node::View(view) => view,
_ => unreachable!(),
}
}
pub fn resize(&mut self, area: Rect) {
self.area = area;
self.traverse();
}
pub fn traverse(&mut self) {
self.stack.push((self.root, self.area));
// take the area
// fetch the node
// a) node is view, give it whole area
// b) node is container, calculate areas for each child and push them on the stack
while let Some((key, area)) = self.stack.pop() {
let node = &mut self.nodes[key];
match node {
Node::View(view) => {
// debug!!("setting view area {:?}", area);
view.area = area;
} // TODO: call f()
Node::Container(container) => {
// debug!!("setting container area {:?}", area);
container.area = area;
match container.layout {
Layout::Vertical => unimplemented!(),
Layout::Horizontal => {
let len = container.children.len() as u16;
let width = area.width / len;
let mut child_x = area.x;
for (_i, child) in container.children.iter().enumerate() {
let area = Rect::new(child_x, area.y, width, area.height);
child_x += width;
self.stack.push((*child, area));
}
}
}
}
}
}
}
}
|