summaryrefslogtreecommitdiff
path: root/math/algebra.md
diff options
context:
space:
mode:
Diffstat (limited to 'math/algebra.md')
-rw-r--r--math/algebra.md2
1 files changed, 1 insertions, 1 deletions
diff --git a/math/algebra.md b/math/algebra.md
index 3717445..7697347 100644
--- a/math/algebra.md
+++ b/math/algebra.md
@@ -29,7 +29,7 @@ A [**ring**](ring-theory) $R$ is a set with two binary operations $+$ and $×$ s
- $(R, ×)$ is a *monoid*
- associativity: $∀a,b,c : (a×b)×c = a×(b×c)$
- multiplicative identity: $∃1, ∀a : 1×a = a×1 = a$
-- The *distributive laws* hold for + and ×:
+- The *distributive laws* hold for $+$ and $×$:
- $∀a,b,c : (a+b) × c = (a×c)+(b×c)$
- $∀a,b,c : a × (b+c) = (a×b) + (a×c)$
- An Abelian or **commutative ring** satisfies an additional axiom: