aboutsummaryrefslogtreecommitdiff
path: root/src/simple.rs
blob: c67fe2e5f06fb7f5e44d52a5893e5b95100bad6e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Simple bidirectional type checking

use crate::ast::*;
use std::collections::HashMap;

pub fn check(context: &Context, expression: Expression, target: &Type) -> Result<(), String> {
    match expression {
        // fall through to inference mode
        Expression::Annotation { expr, kind } => {
            let result = infer(context, Expression::Annotation { expr, kind })?;
            return match subtype(&result, &target) {
                true => Ok(()),
                false => Err(format!("inferred type {result} does not match target {target}"))
            }
        },
        // Bt-CheckInfer
        Expression::Constant { term } => match subtype(&convert(&term)?, &target) {
            true => Ok(()),
            false => Err(format!("constant is of wrong type, expected {target}"))
            // false => Ok(()) // all our constants are Empty for now
        },
        // Bt-CheckInfer
        Expression::Variable { id } => match context.get(&id) {
            Some(term) if subtype(&convert(term)?, &target) => Ok(()),
            Some(_) => Err(format!("variable {id} is of wrong type")),
            None => Err(format!("failed to find variable {id} in context"))
        },
        // Bt-Abs
        Expression::Abstraction { param, func } => match target {
            Type::Function { from, to } => {
                let mut context = context.clone();
                context.insert(param, default(from)?);
                return check(&context, *func, &to);
            },
            _ => Err(format!("attempting to check an abstraction with a non-function type {target}"))
        },
        // fall through to inference mode
        Expression::Application { func, arg } => {
            let result = &infer(context, Expression::Application { func, arg })?;
            return match subtype(&result, &target) {
                true => Ok(()),
                false => Err(format!("inferred type {result} does not match {target}"))
            }
        },
        // T-If
        Expression::Conditional { if_cond, if_then, if_else } => {
            check(context, *if_cond, &Type::Boolean)?;
            check(context, *if_then, &target)?;
            check(context, *if_else, &target)?;
            return Ok(());
        }
    }
}

pub fn infer(context: &Context, expression: Expression) -> Result<Type, String> {
    match expression {
        // Bt-Ann
        Expression::Annotation { expr, kind } => check(context, *expr, &kind).map(|x| kind),
        // Bt-True / Bt-False / etc
        Expression::Constant { term } => convert(&term),
        // Bt-Var
        Expression::Variable { id } => match context.get(&id) {
            Some(term) => infer(&Context::new(), Expression::Constant { term: term.clone() }),
            None => Err(format!("failed to find variable in context {context:?}"))
        },
        // Bt-App
        Expression::Application { func, arg } => match infer(context, *func)? {
            Type::Function { from, to } => check(context, *arg, &*from).map(|x| *to),
            _ => Err(format!("application abstraction is not a function type"))
        },
        // inference from an abstraction is always an error
        // we could try and infer the func without adding the parameter to scope:
        // but this is overwhelmingly likely to be an error, so just report it now.
        Expression::Abstraction { param, func } =>
            Err(format!("attempting to infer from an abstraction")),
        // idk
        Expression::Conditional { if_cond, if_then, if_else } => {
            check(context, *if_cond, &Type::Boolean)?;
            let if_then = infer(context, *if_then)?;
            let if_else = infer(context, *if_else)?;
            if subtype(&if_then, &if_else) && subtype(&if_else, &if_then) {
                Ok(if_then) // fixme: should be the join
            } else {
                Err(format!("if clauses of different types: {if_then} and {if_else}"))
            }
        }
    }
}

/// Evaluates an expression given a context (of variables) to a term, or fails.
pub fn execute(context: &Context, expression: Expression) -> Result<Term, String> {
    match expression {
        Expression::Annotation { expr, .. } => execute(context, *expr),
        Expression::Constant { term } => Ok(term),
        Expression::Variable { id } => match context.get(&id) {
            Some(term) => Ok(term.clone()),
            None => Err(format!("no such variable in context {context:?}"))
        },
        Expression::Abstraction { param, func } =>
            Err(format!("attempting to execute an abstraction ({}){}", param, func)),
        Expression::Application { func, arg } => match *func {
            Expression::Abstraction { param, func } => {
                let value = execute(context, *arg)?;
                let mut context = context.clone();
                context.insert(param, value);
                return execute(&context, *func);
            }
            _ => Err(format!("attempting to execute an application to non-abstraction {}", *func))
        },
        Expression::Conditional { if_cond, if_then, if_else } => {
            match execute(context, *if_cond)? {
                Term::Boolean(true) => execute(context, *if_then),
                Term::Boolean(false) => execute(context, *if_else),
                term => Err(format!("invalid type {} for a conditional", convert(&term)?))
            }
        }
    }
}

/// The subtyping relation between any two types.
pub fn subtype(is: &Type, of: &Type) -> bool {
    match (is, of) {
        (Type::Record(is_fields), Type::Record(of_fields)) => {
            // width, depth, and permutation
            for (key, of_value) in of_fields {
                match is_fields.get(key) {
                    Some(is_value) => {
                        if !subtype(is_value, of_value) {
                            return false;
                        }
                    }
                    None => return false
                }
            }
            return true;
        },
        (Type::Function { from: is_from, to: is_to },
         Type::Function { from: of_from, to: of_to }) => {
            subtype(of_from, is_from) && subtype(is_to, of_to)
        },
        (Type::Natural, Type::Integer) => true, // obviously not, but let's pretend
        (_, Type::Empty) => true,
        (Type::Error, _) => true,
        (_, _) if is == of => true,
        (_, _) => false
    }
}

/// Convert a term into its corresponding type.
pub fn convert(term: &Term) -> Result<Type, String> {
    match term {
        Term::Unit() => Ok(Type::Unit),
        Term::Boolean(_) => Ok(Type::Boolean),
        Term::Natural(_) => Ok(Type::Natural),
        Term::Integer(_) => Ok(Type::Integer),
        Term::Float(_) => Ok(Type::Float),
        Term::String { len, cap, data } => Ok(Type::String),
        Term::Enum { val, data } => data.get(*val)
            .ok_or_else(|| "enum value out of range!".to_string()).cloned(),
        Term::Record(data) => {
            let mut result = HashMap::new();
            for (key, val) in data {
                result.insert(key.clone(), convert(val)?);
            }
            return Ok(Type::Record(result));
        },
        Term::Function(func) => match infer(&Context::new(), *func.clone()) {
            Ok(Type::Function { from, to }) => Ok(Type::Function { from, to }),
            _ => Err("function term value not a function!".to_string())
        }
    }
}

/// Get the default value of a type. Throws an error if it doesn't exist.
pub fn default(kind: &Type) -> Result<Term, String> {
    match kind {
        Type::Empty => Err("attempting to take the default term for empty".to_string()),
        Type::Error => Err("attempting to take the default term for error".to_string()),
        Type::Unit => Ok(Term::Unit()),
        Type::Boolean => Ok(Term::Boolean(false)),
        Type::Natural => Ok(Term::Natural(0)),
        Type::Integer => Ok(Term::Integer(0)),
        Type::Float => Ok(Term::Float(0.0)),
        Type::String => Ok(Term::String { len: 0, cap: 0, data: vec!()}),
        Type::Enum(data) => match data.len() {
            0 => Err("attempting to get a default term of an enum with no variants!".to_string()),
            _ => Ok(Term::Enum { val: 0, data: data.clone() })
        },
        Type::Record(data) => {
            let mut result = HashMap::new();
            for (key, val) in data {
                result.insert(key.clone(), default(&val)?);
            }
            return Ok(Term::Record(result));
        },
        Type::Function { from, to } =>
            Err("attempting to take the default term of a function type".to_string()),
    }
}