aboutsummaryrefslogtreecommitdiff
path: root/entries/fbanados/fib.v
diff options
context:
space:
mode:
authorJames Yoo2022-10-24 23:47:51 +0000
committerJames Yoo2022-10-24 23:47:51 +0000
commit03315f012514bdcc5a4f654056f0103abe11eb83 (patch)
tree2b7c6e9233ecb503e7be0d8354483691f9a1e16c /entries/fbanados/fib.v
parent0921d8222bb883ea86d51c7200a865a5e4dbc469 (diff)
parent7ed13a92711a35a9c263c1f53e33e308653ae727 (diff)
Merging local with remote main
Diffstat (limited to 'entries/fbanados/fib.v')
-rw-r--r--entries/fbanados/fib.v90
1 files changed, 90 insertions, 0 deletions
diff --git a/entries/fbanados/fib.v b/entries/fbanados/fib.v
new file mode 100644
index 0000000..e9fe796
--- /dev/null
+++ b/entries/fbanados/fib.v
@@ -0,0 +1,90 @@
+Require Import Coq.Arith.Wf_nat. (* import strong induction on naturals *)
+Require Import Lia. (* Linear Integer Arithmetic solver *)
+
+(* First, simple specification *)
+
+Fixpoint fib_simpl (n : nat) {struct n} : nat :=
+ match n with
+ | 0 => 1
+ | S n => match n with
+ | 0 => 1
+ | S m => fib_simpl n + fib_simpl m
+ end
+ end.
+
+Example fib_3 : (fib_simpl 2 = 2). reflexivity. Qed.
+Example fib_4 : (fib_simpl 3 = 3). reflexivity. Qed.
+Example fib_5 : (fib_simpl 4 = 5). reflexivity. Qed.
+
+Lemma fib_simpl_spec : forall n, (* useful lemma for rewriting *)
+ fib_simpl (S (S n)) = fib_simpl (S n) + fib_simpl n.
+Proof.
+ destruct n.
+ - (* case n := 0 *)
+ reflexivity.
+ - (* case n := (S n) *)
+ destruct n; reflexivity.
+Qed.
+
+(* For a (slightly) faster version *)
+
+Fixpoint fib_acc_aux (n : nat) (acc : nat) (prev : nat) {struct n} : nat :=
+ match n with
+ | 0 => acc + prev
+ | S n => fib_acc_aux n (acc + prev) acc
+ end.
+
+Definition fib_faster (n : nat) : nat :=
+ match n with
+ | 0 => 1
+ | S n => match n with
+ | 0 => 1
+ | S m => (fib_acc_aux m 1 1)
+ end
+ end.
+
+Example fib_faster_3 : (fib_faster 2 = 2). reflexivity. Qed.
+Example fib_faster_4 : (fib_faster 3 = 3). reflexivity. Qed.
+Example fib_faster_5 : (fib_faster 4 = 5). reflexivity. Qed.
+
+Lemma fib_acc_aux_rewrite : forall n a b c d,
+ fib_acc_aux n a c + fib_acc_aux n b d = fib_acc_aux n (a + b) (c + d).
+Proof.
+ induction n; intros.
+ - (* case n := 0 *)
+ simpl; lia.
+ - (* case n := (S n) *)
+ simpl.
+ rewrite IHn.
+ f_equal.
+ lia.
+Qed.
+
+Theorem fib_faster_spec: forall n, fib_simpl n = fib_faster n.
+Proof.
+ induction n using lt_wf_ind. (* use strong induction *)
+ rename H into strong_induction_hypothesis.
+ destruct n. (* lt_wf_ind does not deal immediately with cases *)
+ - (* case n := 0 *)
+ reflexivity.
+ - (* case n := (S n) *)
+ destruct n.
+ + (* case n := 1 *)
+ reflexivity.
+ + (* case n := (S (S n)) *)
+ rewrite ?fib_simpl_spec.
+ do 2 rewrite strong_induction_hypothesis by lia.
+ enough (forall n, fib_faster (S n) + fib_faster n = fib_faster (S (S n))) as lemma by apply lemma.
+ clear.
+ destruct n.
+ * (* for lemma, case n := 0 *)
+ reflexivity.
+ * (* for lemma, case n := S n *)
+ destruct n.
+ -- (* for lemma, case n := 1 *)
+ reflexivity.
+ -- (* for lemma, case n := S (S n) *)
+ simpl.
+ apply fib_acc_aux_rewrite.
+Qed.
+