aboutsummaryrefslogtreecommitdiff
path: root/entries/jj/tm
diff options
context:
space:
mode:
authorbraxtonhall2023-07-13 18:26:58 +0000
committerbraxtonhall2023-07-13 18:26:58 +0000
commitc37b806da507a699624ec4e800522ef4a47ad7bc (patch)
treebfe99e81e91603508be51bcd31f7bbb4d48f6b6f /entries/jj/tm
parent972c5f34cd093d44e801bf6b41ac0af2032b0b96 (diff)
Update directories
Diffstat (limited to 'entries/jj/tm')
-rw-r--r--entries/jj/tm/fib-desc.txt219
-rw-r--r--entries/jj/tm/fib.txt144
-rw-r--r--entries/jj/tm/tm.nim189
3 files changed, 0 insertions, 552 deletions
diff --git a/entries/jj/tm/fib-desc.txt b/entries/jj/tm/fib-desc.txt
deleted file mode 100644
index b98b324..0000000
--- a/entries/jj/tm/fib-desc.txt
+++ /dev/null
@@ -1,219 +0,0 @@
-The following is a low-level description of a Turing machine that will write
-the Fibonacci sequence (represented in binary, separated by $) without halting.
-
-A Turing machine is a 7-tuple T = (Q,Σ,Γ,δ,qI,qA,qR) where:
-- Q is the set of states; non-empty and finite
-- Σ is the input alphabet; non-empty and finite
-- Γ is the tape alphabet; non-empty and finite
-- δ is the transition function: δ(Q, Γ) -> (Q, Γ, {L, R})
-- qI ∈ Q is the initial state
-- qA ∈ Q is the accept state
-- qR ∈ Q is the reject state
-
-- Q: {
- ca, cb, cc, cd, ce, cf, cg, ch, ci,
- sa, sb, sc, sd,
- aa, ab, ac,
- aaa, aab, aac, aad, aae, aaf,
- aba, abb, abc, abd, abe, abf,
- ba, bb, bc,
- baa, bab, bac, bad, bae, baf,
- bba, bbb, bbc, bbd, bbe, bbf,
- za, zb, zc, zd
-}
-- Σ: not relevant as we entirely disregard the input to begin with.
-- Γ: {_, $, X, 0, 1, 0*, 1*} (_ means the blank symbol)
-- δ: described below. a note on syntax:
- - no entry in the output parameter means do not write a character to the tape.
- - similarly, no entry in the position parameter means do not move the tape head.
- - numerous "possible" transition functions are not stated. those are thought by the author to be inaccessible in normal operation of this machine (and if they are, it is probably a bug).
-- qI: the initial state is ca.
-- qA: the machine does not accept.
-- qR: the machine does not reject.
-
-Overview:
-1. We clear the tape and write our initial state: the first three Fibonacci numbers
-2. We write a number of Xs to the end of the tape for convenience
-3. We add the last two numbers of the sequence digit-by-digit to create another number
- - Effort/pain is taken to ensure carrying works: including when the next number is a digit larger
-4. Upon having created the new Fibonacci number, we write a $ and repeat from step 3, ad nauseam
-
-states c*: clearing the initial tape
-- clear the tape: write $0$1$1$, then write _ until reading a _
-
-δ(ca, Γ) -> (cb, $, R)
-δ(cb, Γ) -> (cc, 0, R)
-δ(cc, Γ) -> (cd, $, R)
-δ(cd, Γ) -> (ce, 1*, R)
-δ(ce, Γ) -> (cf, $, R)
-δ(cf, Γ) -> (cg, 1, R)
-δ(cg, Γ) -> (ch, $, R)
-δ(ch, Γ \ _) -> (ci, _, R)
-δ(ch, _) -> (sa, , )
-
-
-states s*: making space for the next number
-- from the end: append XX...X where len(XX...X) = len(previous_number)
-
-δ(sa, {_,X}) -> (sa, , L)
-δ(sa, $) -> (sb, , L)
-
-δ(sb, {0*,1*}) -> (sb, , L)
-δ(sb, 0) -> (sc, 0*, R)
-δ(sb, 1) -> (sc, 1*, R)
-δ(sb, $) -> (sd, , R)
-
-δ(sc, Γ \ _) -> (sc, , R)
-δ(sc, _) -> (sa, X, L)
-
-δ(sd, {$,X}) -> (sd, , R)
-δ(sd, 0*) -> (sd, 0, R)
-δ(sd, 1*) -> (sd, 1, R)
-δ(sd, _) -> (aa, , L)
-
-
-states a*: add the last digit of both numbers without carrying
-- read left until $, then read left until:
- - 0: replace with 0*, goto state (aaa)
- - 1: replace with 1*, goto state (aba)
- - $: do not replace, read right until _, write $, goto state (s)
-
-δ(aa, {X,0,1}) -> (aa, , L)
-δ(aa, $) -> (ab, , L)
-
-δ(ab, {0*,1*}) -> (ab, , L)
-δ(ab, 0) -> (aaa, 0*, L)
-δ(ab, 1) -> (aba, 1*, L)
-
-δ(ab, $) -> (ac, , R)
-δ(ac, Γ \ _) -> (ac, , R)
-δ(ac, _) -> (sa, $, R)
-
-states aa*
-- read left until $, then read left until:
- - 0*: replace with 0, read right until _, then read left until X and replace with 0
- - 1*: replace with 1, read right until _, then read left until X and replace with 1
-
-δ(aaa, {0,1}) -> (aaa, , L)
-δ(aaa, $) -> (aab, , L)
-
-δ(aab, 0*) -> (aac, 0, R)
-δ(aac, Γ \ _) -> (aac, , R)
-δ(aac, _) -> (aad, , L)
-δ(aad, {0,1}) -> (aad, , L)
-δ(aad, X) -> (aa, 0, L)
-
-δ(aab, 1*) -> (aae, 1, R)
-δ(aae, Γ \ _) -> (aae, , R)
-δ(aae, _) -> (aaf, , L)
-δ(aaf, {0,1}) -> (aaf, , L)
-δ(aaf, X) -> (aa, 1, L)
-
-δ(aab, {0,1}) -> (aab, , L)
-
-states ab*
-- read left until $, then read left until:
- - 0*: replace with 0, read right until _, then read left until X and replace with 1
- - $: do not replace, read right until _, then read left until X and replace with 1
- - 1*: replace with 1, read right until _, then read left until X and replace with 0, goto state (b)
-
-δ(aba, {0,1}) -> (aba, , L)
-δ(aba, $) -> (abb, , L)
-
-δ(abb, 0*) -> (abc, 0, R)
-δ(abc, Γ \ _) -> (abc, , R)
-δ(abc, _) -> (abd, , L)
-δ(abd, {0,1}) -> (abd, , L)
-δ(abd, X) -> (aa, 1, L)
-
-δ(abb, 1*) -> (abe, 1, R)
-δ(abe, Γ \ _) -> (abe, , R)
-δ(abe, _) -> (abf, , L)
-δ(abf, {0,1}) -> (abf, , L)
-δ(abf, X) -> (ba, 0, L)
-
-δ(abb, $) -> (abc, , R)
-
-δ(abb, {0,1}) -> (abb, , L)
-
-
-states b*: add the last digit of both numbers while carrying a one
-- read left from end of tape, after reading $, until reading:
- - 0: replace with 0*, goto state (baa)
- - 1: replace with 1*, goto state (bba)
- - $: do not replace, read right until _, goto state (za)
-
-δ(ba, {X,0,1}) -> (ba, , L)
-δ(ba, $) -> (bb, , L)
-
-δ(bb, {0*,1*}) -> (bb, , L)
-δ(bb, 0) -> (baa, 0*, L)
-δ(bb, 1) -> (bba, 1*, L)
-
-δ(bb, $) -> (bc, , R)
-δ(bc, Γ \ _) -> (bc, , R)
-δ(bc, _) -> (za, , L)
-
-states ba*
-- read left until $, then read left until:
- - 0*: replace with 0, read right until _, then read left until X and replace with 1, then goto state (aa)
- - 1*: replace with 1, read right until _, then read left until X and replace with 0, then goto state (ba)
-
-δ(baa, {0,1}) -> (baa, , L)
-δ(baa, $) -> (bab, , L)
-
-δ(bab, 0*) -> (bac, 0, R)
-δ(bac, Γ \ _) -> (bac, , R)
-δ(bac, _) -> (bad, , L)
-δ(bad, {0,1}) -> (bad, , L)
-δ(bad, X) -> (aa, 1, L)
-
-δ(bab, 1*) -> (bae, 1, R)
-δ(bae, Γ \ _) -> (bae, , R)
-δ(bae, _) -> (baf, , L)
-δ(baf, {0,1}) -> (baf, , L)
-δ(baf, X) -> (ba, 0, L)
-
-δ(bab, {0,1}) -> (bab, , L)
-
-states bb*
-- read left until $, then read left until:
- - 0*: replace with 0, read right until _, then read left until X and replace with 0, goto state (ba)
- - 1*: replace with 1, read right until _, then read left until X and replace with 1, goto state (ba)
-
-δ(bba, {0,1}) -> (bba, , L)
-δ(bba, $) -> (bbb, , L)
-
-δ(bbb, 0*) -> (bbc, 0, R)
-δ(bbc, Γ \ _) -> (bbc, , R)
-δ(bbc, _) -> (bbd, , L)
-δ(bbd, {0,1}) -> (bbd, , L)
-δ(bbd, X) -> (ba, 0, L)
-
-δ(bbb, 1*) -> (bbe, 1, R)
-δ(bbe, Γ \ _) -> (bbe, , R)
-δ(bbe, _) -> (bbf, , L)
-δ(bbf, {0,1}) -> (bbf, , L)
-δ(bbf, X) -> (ba, 1, L)
-
-δ(bbb, $) -> (bbc, , R)
-
-δ(bbb, {0,1}) -> (bbb, , L)
-
-states c*: scooting over the computed number to make space for a carried digit
-- read left until $, then:
- - read right, noting the current number and writing the previous number
- - then go to state (sa)
-
-δ(za, {0,1}) -> (za, , L)
-δ(za, $) -> (zb, , R)
-
-δ(zb, 0) -> (zc, 1, R)
-δ(zb, 1) -> (zb, 1, R)
-δ(zb, _) -> (zd, 1, R)
-
-δ(zc, 0) -> (zc, 0, R)
-δ(zc, 1) -> (zb, 0, R)
-δ(zc, _) -> (zd, 0, R)
-
-δ(zd, _) -> (sa, $, R)
diff --git a/entries/jj/tm/fib.txt b/entries/jj/tm/fib.txt
deleted file mode 100644
index 402db15..0000000
--- a/entries/jj/tm/fib.txt
+++ /dev/null
@@ -1,144 +0,0 @@
-The following is a low-level description of a Turing machine that will write
-the Fibonacci sequence (represented in binary, separated by $) without halting.
-
-A Turing machine is a 7-tuple T = (Q,Σ,Γ,δ,qI,qA,qR) where:
-- Q is the set of states; non-empty and finite
-- Σ is the input alphabet; non-empty and finite
-- Γ is the tape alphabet; non-empty and finite
-- δ is the transition function: δ(Q, Γ) -> (Q, Γ, {L, R})
-- qI ∈ Q is the initial state
-- qA ∈ Q is the accept state
-- qR ∈ Q is the reject state
-
-- Q: {
- ca, cb, cc, cd, ce, cf, cg, ch, ci,
- sa, sb, sc, sd,
- aa, ab, ac,
- aaa, aab, aac, aad, aae, aaf,
- aba, abb, abc, abd, abe, abf,
- ba, bb, bc,
- baa, bab, bac, bad, bae, baf,
- bba, bbb, bbc, bbd, bbe, bbf,
- za, zb, zc, zd
-}
-- Σ: not relevant as we entirely disregard the input to begin with.
-- Γ: {_, $, X, 0, 1, 0*, 1*} (_ means the blank symbol)
-- δ: described below. a note on syntax:
- - no entry in the output parameter means do not write a character to the tape.
- - similarly, no entry in the position parameter means do not move the tape head.
- - numerous "possible" transition functions are not stated. those are thought by the author to be inaccessible in normal operation of this machine (and if they are, it is probably a bug).
-- qI: the initial state is ca.
-- qA: the machine does not accept.
-- qR: the machine does not reject.
-
-δ(ca, Γ) -> (cb, $, R)
-δ(cb, Γ) -> (cc, 0, R)
-δ(cc, Γ) -> (cd, $, R)
-δ(cd, Γ) -> (ce, 1*, R)
-δ(ce, Γ) -> (cf, $, R)
-δ(cf, Γ) -> (cg, 1, R)
-δ(cg, Γ) -> (ch, $, R)
-δ(ch, Γ \ _) -> (ci, _, R)
-δ(ch, _) -> (sa, , )
-
-δ(sa, {_,X}) -> (sa, , L)
-δ(sa, $) -> (sb, , L)
-δ(sb, {0*,1*}) -> (sb, , L)
-δ(sb, 0) -> (sc, 0*, R)
-δ(sb, 1) -> (sc, 1*, R)
-δ(sb, $) -> (sd, , R)
-δ(sc, Γ \ _) -> (sc, , R)
-δ(sc, _) -> (sa, X, L)
-δ(sd, {$,X}) -> (sd, , R)
-δ(sd, 0*) -> (sd, 0, R)
-δ(sd, 1*) -> (sd, 1, R)
-δ(sd, _) -> (aa, , L)
-
-δ(aa, {X,0,1}) -> (aa, , L)
-δ(aa, $) -> (ab, , L)
-δ(ab, {0*,1*}) -> (ab, , L)
-δ(ab, 0) -> (aaa, 0*, L)
-δ(ab, 1) -> (aba, 1*, L)
-δ(ab, $) -> (ac, , R)
-δ(ac, Γ \ _) -> (ac, , R)
-δ(ac, _) -> (sa, $, R)
-
-δ(aaa, {0,1}) -> (aaa, , L)
-δ(aaa, $) -> (aab, , L)
-δ(aab, 0*) -> (aac, 0, R)
-δ(aac, Γ \ _) -> (aac, , R)
-δ(aac, _) -> (aad, , L)
-δ(aad, {0,1}) -> (aad, , L)
-δ(aad, X) -> (aa, 0, L)
-δ(aab, 1*) -> (aae, 1, R)
-δ(aae, Γ \ _) -> (aae, , R)
-δ(aae, _) -> (aaf, , L)
-δ(aaf, {0,1}) -> (aaf, , L)
-δ(aaf, X) -> (aa, 1, L)
-δ(aab, {0,1}) -> (aab, , L)
-
-δ(aba, {0,1}) -> (aba, , L)
-δ(aba, $) -> (abb, , L)
-δ(abb, 0*) -> (abc, 0, R)
-δ(abc, Γ \ _) -> (abc, , R)
-δ(abc, _) -> (abd, , L)
-δ(abd, {0,1}) -> (abd, , L)
-δ(abd, X) -> (aa, 1, L)
-δ(abb, 1*) -> (abe, 1, R)
-δ(abe, Γ \ _) -> (abe, , R)
-δ(abe, _) -> (abf, , L)
-δ(abf, {0,1}) -> (abf, , L)
-δ(abf, X) -> (ba, 0, L)
-δ(abb, $) -> (abc, , R)
-δ(abb, {0,1}) -> (abb, , L)
-
-δ(ba, {X,0,1}) -> (ba, , L)
-δ(ba, $) -> (bb, , L)
-δ(bb, {0*,1*}) -> (bb, , L)
-δ(bb, 0) -> (baa, 0*, L)
-δ(bb, 1) -> (bba, 1*, L)
-δ(bb, $) -> (bc, , R)
-δ(bc, Γ \ _) -> (bc, , R)
-δ(bc, _) -> (za, , L)
-
-δ(baa, {0,1}) -> (baa, , L)
-δ(baa, $) -> (bab, , L)
-δ(bab, 0*) -> (bac, 0, R)
-δ(bac, Γ \ _) -> (bac, , R)
-δ(bac, _) -> (bad, , L)
-δ(bad, {0,1}) -> (bad, , L)
-δ(bad, X) -> (aa, 1, L)
-δ(bab, 1*) -> (bae, 1, R)
-δ(bae, Γ \ _) -> (bae, , R)
-δ(bae, _) -> (baf, , L)
-δ(baf, {0,1}) -> (baf, , L)
-δ(baf, X) -> (ba, 0, L)
-δ(bab, {0,1}) -> (bab, , L)
-
-δ(bba, {0,1}) -> (bba, , L)
-δ(bba, $) -> (bbb, , L)
-δ(bbb, 0*) -> (bbc, 0, R)
-δ(bbc, Γ \ _) -> (bbc, , R)
-δ(bbc, _) -> (bbd, , L)
-δ(bbd, {0,1}) -> (bbd, , L)
-δ(bbd, X) -> (ba, 0, L)
-δ(bbb, 1*) -> (bbe, 1, R)
-δ(bbe, Γ \ _) -> (bbe, , R)
-δ(bbe, _) -> (bbf, , L)
-δ(bbf, {0,1}) -> (bbf, , L)
-δ(bbf, X) -> (ba, 1, L)
-δ(bbb, $) -> (bbc, , R)
-δ(bbb, {0,1}) -> (bbb, , L)
-
-δ(za, {0,1}) -> (za, , L)
-δ(za, $) -> (zb, , R)
-
-δ(zb, 0) -> (zc, 1, R)
-δ(zb, 1) -> (zb, 1, R)
-δ(zb, _) -> (zd, 1, R)
-
-δ(zc, 0) -> (zc, 0, R)
-δ(zc, 1) -> (zb, 0, R)
-δ(zc, _) -> (zd, 0, R)
-
-δ(zd, _) -> (sa, $, R)
diff --git a/entries/jj/tm/tm.nim b/entries/jj/tm/tm.nim
deleted file mode 100644
index 71debe4..0000000
--- a/entries/jj/tm/tm.nim
+++ /dev/null
@@ -1,189 +0,0 @@
-# A simple Turing machine simulator implemented in Nim.
-
-import std/enumerate
-
-type Symbol = enum
- `_`, `$`, `X`, `0`, `1`, `0*`, `1*`,
- noop
-
-type Tape = seq[Symbol]
-
-type Direction = enum
- L, R, S
-
-type State = enum
- ca, cb, cc, cd, ce, cf, cg, ch, ci
- sa, sb, sc, sd,
- aa, ab, ac,
- aaa, aab, aac, aad, aae, aaf,
- aba, abb, abc, abd, abe, abf,
- ba, bb, bc,
- baa, bab, bac, bad, bae, baf,
- bba, bbb, bbc, bbd, bbe, bbf,
- za, zb, zc, zd
-
-type Transition = object
- current_state: State
- read_symbol: set[Symbol]
- next_state: State
- write_symbol: Symbol
- move_direction: Direction
-
-# convenience constructor
-func δ(a: State, b: set[Symbol], c: State, d: Symbol, e: Direction): Transition =
- return Transition(current_state: a, read_symbol: b, next_state: c, write_symbol: d, move_direction: e)
-
-# safe get for an infinite tape: pretty, right?
-func get(tape: var Tape, i: int): Symbol =
- for j in tape.len .. i:
- tape.add(`_`)
- return tape[i]
-
-# safe set for an infinite tape
-func set(tape: var Tape, i: int, s: Symbol) =
- for j in tape.len .. i:
- tape.add(`_`)
- tape[i] = s
-
-let turing_machine = @[
- δ(ca, {`_`}, cb, `$`, R),
- δ(cb, {`_`}, cc, `0`, R),
- δ(cc, {`_`}, cd, `$`, R),
- δ(cd, {`_`}, ce, `1*`, R),
- δ(ce, {`_`}, cf, `$`, R),
- δ(cf, {`_`}, cg, `1`, R),
- δ(cg, {`_`}, ch, `$`, R),
- δ(ch, {`_`}, sa, noop, S),
-
- δ(sa, {`_`, `X`}, sa, noop, L),
- δ(sa, {`$`}, sb, noop, L),
- δ(sb, {`0*`, `1*`}, sb, noop, L),
- δ(sb, {`0`}, sc, `0*`, R),
- δ(sb, {`1`}, sc, `1*`, R),
- δ(sb, {`$`}, sd, noop, R),
- δ(sc, {`$`, `X`, `0*`, `1*`}, sc, noop, R),
- δ(sc, {`_`}, sa, `X`, L),
- δ(sd, {`$`, `X`}, sd, noop, R),
- δ(sd, {`0*`}, sd, `0`, R),
- δ(sd, {`1*`}, sd, `1`, R),
- δ(sd, {`_`}, aa, noop, L),
-
- δ(aa, {`X`, `0`, `1`}, aa, noop, L),
- δ(aa, {`$`}, ab, noop, L),
- δ(ab, {`0*`, `1*`}, ab, noop, L),
- δ(ab, {`0`}, aaa, `0*`, L),
- δ(ab, {`1`}, aba, `1*`, L),
- δ(ab, {`$`}, ac, noop, R),
- δ(ac, {`$`, `X`, `0`, `1`, `0*`, `1*`}, ac, noop, R),
- δ(ac, {`_`}, sa, `$`, R),
-
- δ(aaa, {`0`, `1`}, aaa, noop, L),
- δ(aaa, {`$`}, aab, noop, L),
- δ(aab, {`0*`}, aac, `0`, R),
- δ(aac, {`$`, `X`, `0`, `1`, `0*`, `1*`}, aac, noop, R),
- δ(aac, {`_`}, aad, noop, L),
- δ(aad, {`0`, `1`}, aad, noop, L),
- δ(aad, {`X`}, aa, `0`, L),
- δ(aab, {`1*`}, aae, `1`, R),
- δ(aae, {`$`, `X`, `0`, `1`, `0*`, `1*`}, aae, noop, R),
- δ(aae, {`_`}, aaf, noop, L),
- δ(aaf, {`0`, `1`}, aaf, noop, L),
- δ(aaf, {`X`}, aa, `1`, L),
- δ(aab, {`0`, `1`}, aab, noop, L),
-
- δ(aba, {`0`, `1`}, aba, noop, L),
- δ(aba, {`$`}, abb, noop, L),
- δ(abb, {`0*`}, abc, `0`, R),
- δ(abc, {`$`, `X`, `0`, `1`, `0*`, `1*`}, abc, noop, R),
- δ(abc, {`_`}, abd, noop, L),
- δ(abd, {`0`, `1`}, abd, noop, L),
- δ(abd, {`X`}, aa, `1`, L),
- δ(abb, {`1*`}, abe, `1`, R),
- δ(abe, {`$`, `X`, `0`, `1`, `0*`, `1*`}, abe, noop, R),
- δ(abe, {`_`}, abf, noop, L),
- δ(abf, {`0`, `1`}, abf, noop, L),
- δ(abf, {`X`}, ba, `0`, L),
- δ(abb, {`$`}, abc, noop, R),
- δ(abb, {`0`, `1`}, abb, noop, L),
-
- δ(ba, {`X`, `0`, `1`}, ba, noop, L),
- δ(ba, {`$`}, bb, noop, L),
- δ(bb, {`0*`, `1*`}, bb, noop, L),
- δ(bb, {`0`}, baa, `0*`, L),
- δ(bb, {`1`}, bba, `1*`, L),
- δ(bb, {`$`}, bc, noop, R),
- δ(bc, {`$`, `X`, `0`, `1`, `0*`, `1*`}, bc, noop, R),
- δ(bc, {`_`}, za, noop, L),
-
- δ(baa, {`0`, `1`}, baa, noop, L),
- δ(baa, {`$`}, bab, noop, L),
- δ(bab, {`0*`}, bac, `0`, R),
- δ(bac, {`$`, `X`, `0`, `1`, `0*`, `1*`}, bac, noop, R),
- δ(bac, {`_`}, bad, noop, L),
- δ(bad, {`0`, `1`}, bad, noop, L),
- δ(bad, {`X`}, aa, `1`, L),
- δ(bab, {`1*`}, bae, `1`, R),
- δ(bae, {`$`, `X`, `0`, `1`, `0*`, `1*`}, bae, noop, R),
- δ(bae, {`_`}, baf, noop, L),
- δ(baf, {`0`, `1`}, baf, noop, L),
- δ(baf, {`X`}, ba, `0`, L),
- δ(bab, {`0`, `1`}, bab, noop, L),
-
- δ(bba, {`0`, `1`}, bba, noop, L),
- δ(bba, {`$`}, bbb, noop, L),
- δ(bbb, {`0*`}, bbc, `0`, R),
- δ(bbc, {`$`, `X`, `0`, `1`, `0*`, `1*`}, bbc, noop, R),
- δ(bbc, {`_`}, bbd, noop, L),
- δ(bbd, {`0`, `1`}, bbd, noop, L),
- δ(bbd, {`X`}, ba, `0`, L),
- δ(bbb, {`1*`}, bbe, `1`, R),
- δ(bbe, {`$`, `X`, `0`, `1`, `0*`, `1*`}, bbe, noop, R),
- δ(bbe, {`_`}, bbf, noop, L),
- δ(bbf, {`0`, `1`}, bbf, noop, L),
- δ(bbf, {`X`}, ba, `1`, L),
- δ(bbb, {`$`}, bbc, noop, R),
- δ(bbb, {`0`, `1`}, bbb, noop, L),
-
- δ(za, {`0`, `1`}, za, noop, L),
- δ(za, {`$`}, zb, noop, R),
-
- δ(zb, {`0`}, zc, `1`, R),
- δ(zb, {`1`}, zb, `1`, R),
- δ(zb, {`_`}, zd, `1`, R),
-
- δ(zc, {`0`}, zc, `0`, R),
- δ(zc, {`1`}, zb, `0`, R),
- δ(zc, {`_`}, zd, `0`, R),
-
- δ(zd, {`_`}, sa, `$`, R)
-]
-
-proc print(state: State, tape: Tape, position: int) =
- stdout.write($state)
- for i, s in enumerate(tape):
- if i == position:
- stdout.write("[" & $s & "]")
- elif s == `$`:
- stdout.write(" ")
- else:
- stdout.write($s)
- stdout.write("\n")
-
-var state = ca
-var position = 0
-var tape = @[`_`]
-
-proc step() =
- # print(state, tape, position)
- for δ in turing_machine:
- if state == δ.current_state and tape.get(position) in δ.read_symbol:
- state = δ.next_state
- if δ.write_symbol != noop: tape.set(position, δ.write_symbol)
- if δ.move_direction == L: position.dec
- elif δ.move_direction == R: position.inc
- return
- echo "Invalid state! crashing"
- quit()
-
-while true:
- step()