diff options
author | Felipe Bañados Schwerter | 2022-10-24 16:46:18 +0000 |
---|---|---|
committer | Felipe Bañados Schwerter | 2022-10-24 16:46:18 +0000 |
commit | b42ea5e994de56ffc7d4ec0e723261a147179b15 (patch) | |
tree | 8c5dcf8bd7c042efd730f5de9e7c7d602e59a2df /entries | |
parent | b9ab257c2d46a832e0b3bb904bc40e59daa42481 (diff) |
Specified implementation in coq
Diffstat (limited to 'entries')
-rw-r--r-- | entries/fbanados/fib.v | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/entries/fbanados/fib.v b/entries/fbanados/fib.v new file mode 100644 index 0000000..e9fe796 --- /dev/null +++ b/entries/fbanados/fib.v @@ -0,0 +1,90 @@ +Require Import Coq.Arith.Wf_nat. (* import strong induction on naturals *) +Require Import Lia. (* Linear Integer Arithmetic solver *) + +(* First, simple specification *) + +Fixpoint fib_simpl (n : nat) {struct n} : nat := + match n with + | 0 => 1 + | S n => match n with + | 0 => 1 + | S m => fib_simpl n + fib_simpl m + end + end. + +Example fib_3 : (fib_simpl 2 = 2). reflexivity. Qed. +Example fib_4 : (fib_simpl 3 = 3). reflexivity. Qed. +Example fib_5 : (fib_simpl 4 = 5). reflexivity. Qed. + +Lemma fib_simpl_spec : forall n, (* useful lemma for rewriting *) + fib_simpl (S (S n)) = fib_simpl (S n) + fib_simpl n. +Proof. + destruct n. + - (* case n := 0 *) + reflexivity. + - (* case n := (S n) *) + destruct n; reflexivity. +Qed. + +(* For a (slightly) faster version *) + +Fixpoint fib_acc_aux (n : nat) (acc : nat) (prev : nat) {struct n} : nat := + match n with + | 0 => acc + prev + | S n => fib_acc_aux n (acc + prev) acc + end. + +Definition fib_faster (n : nat) : nat := + match n with + | 0 => 1 + | S n => match n with + | 0 => 1 + | S m => (fib_acc_aux m 1 1) + end + end. + +Example fib_faster_3 : (fib_faster 2 = 2). reflexivity. Qed. +Example fib_faster_4 : (fib_faster 3 = 3). reflexivity. Qed. +Example fib_faster_5 : (fib_faster 4 = 5). reflexivity. Qed. + +Lemma fib_acc_aux_rewrite : forall n a b c d, + fib_acc_aux n a c + fib_acc_aux n b d = fib_acc_aux n (a + b) (c + d). +Proof. + induction n; intros. + - (* case n := 0 *) + simpl; lia. + - (* case n := (S n) *) + simpl. + rewrite IHn. + f_equal. + lia. +Qed. + +Theorem fib_faster_spec: forall n, fib_simpl n = fib_faster n. +Proof. + induction n using lt_wf_ind. (* use strong induction *) + rename H into strong_induction_hypothesis. + destruct n. (* lt_wf_ind does not deal immediately with cases *) + - (* case n := 0 *) + reflexivity. + - (* case n := (S n) *) + destruct n. + + (* case n := 1 *) + reflexivity. + + (* case n := (S (S n)) *) + rewrite ?fib_simpl_spec. + do 2 rewrite strong_induction_hypothesis by lia. + enough (forall n, fib_faster (S n) + fib_faster n = fib_faster (S (S n))) as lemma by apply lemma. + clear. + destruct n. + * (* for lemma, case n := 0 *) + reflexivity. + * (* for lemma, case n := S n *) + destruct n. + -- (* for lemma, case n := 1 *) + reflexivity. + -- (* for lemma, case n := S (S n) *) + simpl. + apply fib_acc_aux_rewrite. +Qed. + |