blob: e9fe796a555cecec2f7f5d0cf91025d5852ba969 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
Require Import Coq.Arith.Wf_nat. (* import strong induction on naturals *)
Require Import Lia. (* Linear Integer Arithmetic solver *)
(* First, simple specification *)
Fixpoint fib_simpl (n : nat) {struct n} : nat :=
match n with
| 0 => 1
| S n => match n with
| 0 => 1
| S m => fib_simpl n + fib_simpl m
end
end.
Example fib_3 : (fib_simpl 2 = 2). reflexivity. Qed.
Example fib_4 : (fib_simpl 3 = 3). reflexivity. Qed.
Example fib_5 : (fib_simpl 4 = 5). reflexivity. Qed.
Lemma fib_simpl_spec : forall n, (* useful lemma for rewriting *)
fib_simpl (S (S n)) = fib_simpl (S n) + fib_simpl n.
Proof.
destruct n.
- (* case n := 0 *)
reflexivity.
- (* case n := (S n) *)
destruct n; reflexivity.
Qed.
(* For a (slightly) faster version *)
Fixpoint fib_acc_aux (n : nat) (acc : nat) (prev : nat) {struct n} : nat :=
match n with
| 0 => acc + prev
| S n => fib_acc_aux n (acc + prev) acc
end.
Definition fib_faster (n : nat) : nat :=
match n with
| 0 => 1
| S n => match n with
| 0 => 1
| S m => (fib_acc_aux m 1 1)
end
end.
Example fib_faster_3 : (fib_faster 2 = 2). reflexivity. Qed.
Example fib_faster_4 : (fib_faster 3 = 3). reflexivity. Qed.
Example fib_faster_5 : (fib_faster 4 = 5). reflexivity. Qed.
Lemma fib_acc_aux_rewrite : forall n a b c d,
fib_acc_aux n a c + fib_acc_aux n b d = fib_acc_aux n (a + b) (c + d).
Proof.
induction n; intros.
- (* case n := 0 *)
simpl; lia.
- (* case n := (S n) *)
simpl.
rewrite IHn.
f_equal.
lia.
Qed.
Theorem fib_faster_spec: forall n, fib_simpl n = fib_faster n.
Proof.
induction n using lt_wf_ind. (* use strong induction *)
rename H into strong_induction_hypothesis.
destruct n. (* lt_wf_ind does not deal immediately with cases *)
- (* case n := 0 *)
reflexivity.
- (* case n := (S n) *)
destruct n.
+ (* case n := 1 *)
reflexivity.
+ (* case n := (S (S n)) *)
rewrite ?fib_simpl_spec.
do 2 rewrite strong_induction_hypothesis by lia.
enough (forall n, fib_faster (S n) + fib_faster n = fib_faster (S (S n))) as lemma by apply lemma.
clear.
destruct n.
* (* for lemma, case n := 0 *)
reflexivity.
* (* for lemma, case n := S n *)
destruct n.
-- (* for lemma, case n := 1 *)
reflexivity.
-- (* for lemma, case n := S (S n) *)
simpl.
apply fib_acc_aux_rewrite.
Qed.
|