aboutsummaryrefslogtreecommitdiff
path: root/entries/lilylin/fractran/src/engines/register.rs
blob: c7c847b483792e15764125c34a71d87d0f2a49c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use std::collections::HashMap;

use crate::core::Program;

#[derive(Debug)]
pub struct Register {
    pub program: Program,
    pub output_base: u64, // which prime factor registers should be used to determine output
}

#[derive(Debug)]
struct Instruction {
    conditions: Vec<(usize, u64)>, // index, amt pairs
    increment: Vec<(usize, u64)>,
}

impl Register {
    fn prime_factorize(x: u64) -> Vec<(u64, u64)> {
        let primes = primes::factors_uniq(x);
        let mut prime_factorized = Vec::new();
        // println!("val: {:?}", x);
        for prime in primes {
            let mut amount = 1;
            loop {
                if x % prime.pow(amount + 1) != 0 {
                    break;
                }
                amount += 1;
            }
            // println!("{:?}, {:?}", prime, amount);
            prime_factorized.push((prime, amount as u64));
        }
        return prime_factorized;
    }
    fn convert(&self) -> (Vec<u64>, Vec<Instruction>, HashMap<usize, u64>) {
        let mut primes = Vec::new();

        let mut prime_to_index = |prime: u64| {
            let index: usize;
            if primes.contains(&prime) {
                index = primes.iter().position(|&x| x == prime).unwrap();
            } else {
                index = primes.len();
                primes.push(prime);
            }
            return index;
        };

        let mut instrs = Vec::new();
        for fraction in &self.program.fractions {
            let denom_pfs = Register::prime_factorize(fraction.1 as u64);
            let num_pfs = Register::prime_factorize(fraction.0 as u64);
            instrs.push(Instruction {
                conditions: denom_pfs
                    .iter()
                    .map(|x| (prime_to_index(x.0), x.1))
                    .collect(),
                increment: num_pfs.iter().map(|x| (prime_to_index(x.0), x.1)).collect(),
            })
        }

        let mut initial_registers = Vec::new();
        initial_registers.resize(primes.len(), 0);
        for (prime, amt) in Register::prime_factorize(self.program.initial) {
            let idx = primes.iter().position(|&x| x == prime).unwrap();
            initial_registers[idx] = amt;
        }

        let output_condition: HashMap<usize, u64> = Register::prime_factorize(self.output_base)
            .iter()
            .map(|(prime, amt)| (primes.iter().position(|&x| x == *prime).unwrap(), *amt))
            .collect();

        // println!("Prime layout: {:?}", primes);
        // println!("Output condition: {:?}", output_condition);
        return (initial_registers, instrs, output_condition);
    }
}

impl IntoIterator for Register {
    type Item = u64;
    type IntoIter = RegisterIter;

    fn into_iter(self) -> Self::IntoIter {
        let (registers, instructions, output_condition) = self.convert();
        RegisterIter {
            instructions,
            registers,
            output_condition,
        }
    }
}

pub struct RegisterIter {
    instructions: Vec<Instruction>,
    registers: Vec<u64>,
    output_condition: HashMap<usize, u64>,
}

// impl RegisterIter {
//     fn registers_to_val(&self) -> BigUint {
//         let mut val = BigUint::zero();
//         for (amt, prime) in self.registers.iter().zip(&self.prime_mapping) {
//             val += prime.to_biguint().unwrap().pow(*amt);
//         }
//         return val;
//     }
// }

impl Iterator for RegisterIter {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            for instr in &self.instructions {
                if instr
                    .conditions
                    .iter()
                    .all(|(idx, amt)| self.registers[*idx] >= *amt)
                {
                    instr
                        .conditions
                        .iter()
                        .for_each(|(idx, amt)| self.registers[*idx] -= *amt);
                    instr
                        .increment
                        .iter()
                        .for_each(|(idx, amt)| self.registers[*idx] += *amt);
                    break;
                }
            }

            // Output condition checking
            // Check that all other registers are 0
            if !self
                .registers
                .iter()
                .enumerate()
                .all(|(idx, val)| self.output_condition.contains_key(&idx) || *val == 0)
            {
                continue;
            }

            // Check that the condition registers are multiples of the condition amounts
            if !self
                .output_condition
                .iter()
                .all(|(idx, cond)| self.registers[*idx] % cond == 0)
            {
                continue;
            }

            // Check that condition registers are the _same_ multipel of the condition amounts
            let mut xs = self
                .output_condition
                .iter()
                .map(|(idx, cond)| self.registers[*idx] / cond);
            let first = xs.next().unwrap();
            if xs.all(|y| y == first) {
                return Some(first);
            }
        }
    }
}