aboutsummaryrefslogtreecommitdiff
path: root/entries/markusde/collatz/collatz.tex
blob: 8e180885cfd878aa06b1b2660e041faf24bd0570 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
\documentclass[12pt]{article}
\usepackage[landscape]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\renewcommand{\phi}{\varphi}
\begin{document}

\noindent The least fixed point of 
\begin{align*}
    h & : (\mathbb{N}_\bot \to \mathbb{Z}_\bot) \to (\mathbb{N}_\bot \to \mathbb{Z}_\bot) \\
    h(F)(n) & = 
    \begin{cases}
        1 & n = 1 \\
        (\phi^{n/2} + (-\phi)^{-n/2})\, F_{n/2} & n \textrm{ is even} \\
        \sqrt[3]{\frac{\phi^{3n+1}-\phi F_{3n+1}}{10} + \frac{\sqrt{25 \phi^{3n+1} - 25\phi F_{3n+1} - 20}}{50}} + \sqrt[3]{\frac{\phi^{3n+1}-\phi F_{3n+1}}{10} - \frac{\sqrt{25 \phi^{3n+1} - 25\phi F_{3n+1} - 20}}{50}} & \textrm{otherwise} \\
    \end{cases}
\end{align*}
is the Fibonacci sequence if and only if the Collatz conjecture is true.

\end{document}