aboutsummaryrefslogtreecommitdiff
path: root/entries/omentic/tm/fib.txt
blob: 402db154d40aa18015e11ebace96867092fa565f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
The following is a low-level description of a Turing machine that will write
the Fibonacci sequence (represented in binary, separated by $) without halting.

A Turing machine is a 7-tuple T = (Q,Σ,Γ,δ,qI,qA,qR) where:
- Q is the set of states; non-empty and finite
- Σ is the input alphabet; non-empty and finite
- Γ is the tape alphabet; non-empty and finite
- δ is the transition function: δ(Q, Γ) -> (Q, Γ, {L, R})
- qI ∈ Q is the initial state
- qA ∈ Q is the accept state
- qR ∈ Q is the reject state

- Q: {
  ca, cb, cc, cd, ce, cf, cg, ch, ci,
  sa, sb, sc, sd,
  aa, ab, ac,
  aaa, aab, aac, aad, aae, aaf,
  aba, abb, abc, abd, abe, abf,
  ba, bb, bc,
  baa, bab, bac, bad, bae, baf,
  bba, bbb, bbc, bbd, bbe, bbf,
  za, zb, zc, zd
}
- Σ: not relevant as we entirely disregard the input to begin with.
- Γ: {_, $, X, 0, 1, 0*, 1*} (_ means the blank symbol)
- δ: described below. a note on syntax:
  - no entry in the output parameter means do not write a character to the tape.
  - similarly, no entry in the position parameter means do not move the tape head.
  - numerous "possible" transition functions are not stated. those are thought by the author to be inaccessible in normal operation of this machine (and if they are, it is probably a bug).
- qI: the initial state is ca.
- qA: the machine does not accept.
- qR: the machine does not reject.

δ(ca, Γ) -> (cb, $, R)
δ(cb, Γ) -> (cc, 0, R)
δ(cc, Γ) -> (cd, $, R)
δ(cd, Γ) -> (ce, 1*, R)
δ(ce, Γ) -> (cf, $, R)
δ(cf, Γ) -> (cg, 1, R)
δ(cg, Γ) -> (ch, $, R)
δ(ch, Γ \ _) -> (ci, _, R)
δ(ch, _) -> (sa, , )

δ(sa, {_,X}) -> (sa, , L)
δ(sa, $) -> (sb, , L)
δ(sb, {0*,1*}) -> (sb, , L)
δ(sb, 0) -> (sc, 0*, R)
δ(sb, 1) -> (sc, 1*, R)
δ(sb, $) -> (sd, , R)
δ(sc, Γ \ _) -> (sc, , R)
δ(sc, _) -> (sa, X, L)
δ(sd, {$,X}) -> (sd, , R)
δ(sd, 0*) -> (sd, 0, R)
δ(sd, 1*) -> (sd, 1, R)
δ(sd, _) -> (aa, , L)

δ(aa, {X,0,1}) -> (aa, , L)
δ(aa, $) -> (ab, , L)
δ(ab, {0*,1*}) -> (ab, , L)
δ(ab, 0) -> (aaa, 0*, L)
δ(ab, 1) -> (aba, 1*, L)
δ(ab, $) -> (ac, , R)
δ(ac, Γ \ _) -> (ac, , R)
δ(ac, _) -> (sa, $, R)

δ(aaa, {0,1}) -> (aaa, , L)
δ(aaa, $) -> (aab, , L)
δ(aab, 0*) -> (aac, 0, R)
δ(aac, Γ \ _) -> (aac, , R)
δ(aac, _) -> (aad, , L)
δ(aad, {0,1}) -> (aad, , L)
δ(aad, X) -> (aa, 0, L)
δ(aab, 1*) -> (aae, 1, R)
δ(aae, Γ \ _) -> (aae, , R)
δ(aae, _) -> (aaf, , L)
δ(aaf, {0,1}) -> (aaf, , L)
δ(aaf, X) -> (aa, 1, L)
δ(aab, {0,1}) -> (aab, , L)

δ(aba, {0,1}) -> (aba, , L)
δ(aba, $) -> (abb, , L)
δ(abb, 0*) -> (abc, 0, R)
δ(abc, Γ \ _) -> (abc, , R)
δ(abc, _) -> (abd, , L)
δ(abd, {0,1}) -> (abd, , L)
δ(abd, X) -> (aa, 1, L)
δ(abb, 1*) -> (abe, 1, R)
δ(abe, Γ \ _) -> (abe, , R)
δ(abe, _) -> (abf, , L)
δ(abf, {0,1}) -> (abf, , L)
δ(abf, X) -> (ba, 0, L)
δ(abb, $) -> (abc, , R)
δ(abb, {0,1}) -> (abb, , L)

δ(ba, {X,0,1}) -> (ba, , L)
δ(ba, $) -> (bb, , L)
δ(bb, {0*,1*}) -> (bb, , L)
δ(bb, 0) -> (baa, 0*, L)
δ(bb, 1) -> (bba, 1*, L)
δ(bb, $) -> (bc, , R)
δ(bc, Γ \ _) -> (bc, , R)
δ(bc, _) -> (za, , L)

δ(baa, {0,1}) -> (baa, , L)
δ(baa, $) -> (bab, , L)
δ(bab, 0*) -> (bac, 0, R)
δ(bac, Γ \ _) -> (bac, , R)
δ(bac, _) -> (bad, , L)
δ(bad, {0,1}) -> (bad, , L)
δ(bad, X) -> (aa, 1, L)
δ(bab, 1*) -> (bae, 1, R)
δ(bae, Γ \ _) -> (bae, , R)
δ(bae, _) -> (baf, , L)
δ(baf, {0,1}) -> (baf, , L)
δ(baf, X) -> (ba, 0, L)
δ(bab, {0,1}) -> (bab, , L)

δ(bba, {0,1}) -> (bba, , L)
δ(bba, $) -> (bbb, , L)
δ(bbb, 0*) -> (bbc, 0, R)
δ(bbc, Γ \ _) -> (bbc, , R)
δ(bbc, _) -> (bbd, , L)
δ(bbd, {0,1}) -> (bbd, , L)
δ(bbd, X) -> (ba, 0, L)
δ(bbb, 1*) -> (bbe, 1, R)
δ(bbe, Γ \ _) -> (bbe, , R)
δ(bbe, _) -> (bbf, , L)
δ(bbf, {0,1}) -> (bbf, , L)
δ(bbf, X) -> (ba, 1, L)
δ(bbb, $) -> (bbc, , R)
δ(bbb, {0,1}) -> (bbb, , L)

δ(za, {0,1}) -> (za, , L)
δ(za, $) -> (zb, , R)

δ(zb, 0) -> (zc, 1, R)
δ(zb, 1) -> (zb, 1, R)
δ(zb, _) -> (zd, 1, R)

δ(zc, 0) -> (zc, 0, R)
δ(zc, 1) -> (zb, 0, R)
δ(zc, _) -> (zd, 0, R)

δ(zd, _) -> (sa, $, R)