aboutsummaryrefslogtreecommitdiff
path: root/stlc-dll.rkt
blob: 42ed82e7af4c8acb6d323ed9bbc3989844036e30 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#lang racket
(require "lib.rkt")
(require (only-in "stlc-rec.rkt" replace))
(require (only-in "stlc-ext.rkt" expand))

;; The Simply-Typed Lambda Calculus with higher-order *impredicative* references,
;; plus sums products booleans ascryption etc, to implement doubly-linked lists

;;      (interpret Expr Table[Sym, Expr] Table[Sym, Expr]): Value ⊕ Err
(define (interpret expr)
  (interpret-core (strip (desugar expr)) #hash() (make-hash)))
;; Γ: a Table[Symbol, Expr] representing the context:
;;   the current bindings in scope introduced by λx.[]
;; Σ: a Table[Symbol, Expr] representing the heap:
;;   the current references on the heap generated by (gensym). mutable
;; Interprets a *desugared* expression *stripped* of type annotations.
(define (interpret-core expr Γ Σ)
  (match expr
    ['sole 'sole]
    [n #:when (natural? n) n]
    [b #:when (boolean? b) b]
    [r #:when (dict-has-key? Σ r) r]
    [x #:when (dict-has-key? Γ x) (dict-ref Γ x)]

    [`(inc ,e)
      (match (interpret-core e Γ Σ)
        [n #:when (natural? n) (+ n 1)]
        [e (format "incrementing an unknown value ~a" e)])]
    [`(if ,c ,e1 ,e2)
      (match (interpret-core c Γ Σ)
        ['#t (interpret-core e1 Γ Σ)]
        ['#f (interpret-core e2 Γ Σ)]
        [e (err (format "calling if on unknown expression ~a" e))])]

    [`(pair ,e1 ,e2)
      `(pair ,(interpret-core e1 Γ Σ) ,(interpret-core e2 Γ Σ))]
    [`(car ,e)
      (match (interpret-core e Γ Σ)
        [`(pair ,e1 ,e2) e1]
        [e (err (format "calling car on unknown expression ~a" e))])]
    [`(cdr ,e)
      (match (interpret-core e Γ Σ)
        [`(pair ,e1 ,e2) e2]
        [e (err (format "calling cdr on unknown expression ~a" e))])]

    [`(inl ,e) `(inl ,(interpret-core e Γ Σ))]
    [`(inr ,e) `(inr ,(interpret-core e Γ Σ))]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (match (interpret-core e Γ Σ)
        [`(inl ,e) (interpret-core e1 (dict-set Γ x1 e) Σ)]
        [`(inr ,e) (interpret-core e2 (dict-set Γ x2 e) Σ)]
        [e (err (format "calling case on unknown expression ~a" e))])]

    [`(new ,e)
      (let ([r (gensym)])
      (dict-set! Σ r e) r)]
    [`(! ,e)
      (let ([r (interpret-core e Γ Σ)])
      (if (dict-has-key? Σ r)
        (interpret-core (dict-ref Σ r) Γ Σ)
        (err (format "attempting to deref unknown reference ~a" r))))]
    [`(set ,e1 ,e2)
      (let ([r (interpret-core e1 Γ Σ)])
      (if (dict-has-key? Σ r) (dict-set! Σ r (interpret-core e2 Γ Σ))
        (err (format "attempting to update unknown reference ~a" r))))
      'sole]

    [`(fold ,e) `(fold ,(interpret-core e Γ Σ))]
    [`(unfold ,e)
      (match (interpret-core e Γ Σ)
        [`(fold ,e) e]
        [e (err (format "attempting to unfold unknown expression ~a" e))])]

    [`(λ ,x ,e) `(λ ,x ,e ,Γ)]
    [`(,e1 ,e2)
      (match (interpret-core e1 Γ Σ)
        [`(λ ,x ,e1 ,env)
          (interpret-core e1 (dict-set env x (interpret-core e2 Γ Σ)) Σ)]
        [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])]

    [e (err (format "attempting to interpret unknown expression ~a" e))]))

;; Checks that an expression is of a type, and returns #t or #f (or a bubbled-up error)
;; with: a type in weak-head normal form (!!)
;; Γ: a Table[Symbol, Expr ⊕ Type] representing the context:
;;   the current bindings in scope introduced by λx.[] and μx.[] and τx.[]
;;      (check Expr Type Table[Sym, Type]): Bool
(define (check expr with)
  (check-core (desugar expr) with #hash()))
(define (check-core expr with Γ)
  (match expr
    [`(type ,t1 ,t2 ,in)
      (check-core in with (dict-set Γ t1 t2))]

    [`(if ,c ,e1 ,e2)
      (and (check-core c 'Bool Γ)
        (check-core e1 with Γ) (check-core e2 with Γ))]

    [`(pair ,e1 ,e2)
      (match with
        [`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))]
        [_ #f])]

    [`(inl ,e)
      (match with
        [`(,t1  ,t2) (check-core e t1 Γ)]
        [_ #f])]
    [`(inr ,e)
      (match with
        [`(,t1  ,t2) (check-core e t2 Γ)]
        [_ #f])]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (match (infer-core e Γ)
        [`(,a1  ,a2)
          (and (check-core e1 with (dict-set Γ x1 a1))
            (check-core e2 with (dict-set Γ x2 a2)))]
        [_ #f])]

    [`(new ,e)
      (match with
        [`(Ref ,t) (check-core e t Γ)]
        [_ #f])]
    [`(! ,e)
      (check-core e `(Ref ,with) Γ)]

    [`(fold ,e)
      (match with
        [`(μ ,x ,t) (check-core e t (dict-set Γ x `(μ ,x ,t)))]
        [_ #f])]

    [`(λ (,x : ,t) ,e)
      (match with
        [`(,t1  ,k ,t2)
          (and (equiv-type t t1 Γ) (check-core e t2 (dict-set Γ x t))
            (> k (level-body e (dict-set Γ x t1))))] ; KNOB
        [`(,t1  ,t2) (err (format "missing level annotation on function type"))]
        [_ #f])]

    [_ (equiv-type (infer-core expr Γ) with Γ)]))

;; Checks if two types are equivalent up to α-conversion in context
;;      (equiv-type Type Type Table[Sym Type]): Bool
(define (equiv-type e1 e2 Γ)
  (equiv-type-core e1 e2 Γ Γ))
(define (equiv-type-core e1 e2 Γ1 Γ2)
  (match* (e1 e2)
    ; bound identifiers: if a key exists in the context, look it up
    [(x1 x2) #:when (dict-has-key? Γ1 x1)
      (equiv-type-core (dict-ref Γ1 x1) x2 Γ1 Γ2)]
    [(x1 x2) #:when (dict-has-key? Γ2 x2)
      (equiv-type-core x1 (dict-ref Γ2 x2) Γ1 Γ2)]

    ; recursive types: self-referential names can be arbitrary
    [(`(μ ,x1 ,t1) `(μ ,x2 ,t2))
      (let ([name gensym])
      (equiv-type-core t1 t2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))]

    ; check for syntactic equivalence on remaining forms
    [(`(,l1 ...) `(,l2 ...))
      (foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
    [(v1 v2) (equal? v1 v2)]))

;; Infers a type from a given expression, if possible, or errors out.
;; Returns a type in weak-head normal form for structural matching.
;;      (infer Expr Table[Sym, Type]): Type
(define (infer expr)
  (infer-core (desugar expr) #hash()))
(define (infer-core expr Γ)
  (match expr
    ['sole 'Unit]
    [n #:when (natural? n) 'Nat]
    [b #:when (boolean? b) 'Bool]
    [x #:when (dict-has-key? Γ x)
      (expand (dict-ref Γ x) Γ)]

    [`(type ,t1 ,t2 ,in)
      (infer-core in (dict-set Γ t1 t2))]
    [`(,e : ,t) ; we have a manual type annotation, so we must expand to weak-head normal form
      (if (check-core e (expand t Γ) Γ) (expand t Γ)
        (err (format "annotated expression ~a is not of annotated type ~a" e t)))]

    [`(inc ,e)
      (if (check-core e 'Nat Γ) 'Nat
        (err (format "calling inc on incorrect type ~a" (infer-core e Γ))))]
    [`(if ,c ,e1 ,e2)
      (if (check-core c 'Bool Γ)
        (let ([t (infer-core e1 Γ)])
        (if (check-core e2 t Γ) t
          (err (format "condition has branches of differing types ~a and ~a"
            t (infer-core e2 Γ)))))
        (err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))]

    [`(pair ,e1 ,e2)
      `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))]
    [`(car ,e)
      (match (infer-core e Γ)
        [`(,t1 × ,t2) t1]
        [t (err (format "calling car on incorrect type ~a" t))])]
    [`(cdr ,e)
      (match (infer-core e Γ)
        [`(,t1 × ,t2) t2]
        [t (err (format "calling cdr on incorrect type ~a" t))])]

    [`(inl ,e)
      (err (format "unable to infer the type of a raw inl"))]
    [`(inr ,e)
      (err (format "unable to infer the type of a raw inr"))]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (match (infer-core e Γ)
        [`(,a1  ,a2)
          (let ([b1 (infer-core e1 (dict-set Γ x1 a1))]
                [b2 (infer-core e2 (dict-set Γ x2 a2))])
            (if (equiv-type b1 b2 Γ) b1
              (err (format "case ~a is not of consistent type!"
                `(case (,a1  ,a2) (,x1  ,b1) (,x2  ,b2))))))]
        [t (err (format "calling case on incorrect type ~a" t))])]

    [`(new ,e)
      `(Ref ,(infer-core e Γ))]
    [`(! ,e)
      (match (infer-core e Γ)
        [`(Ref ,t) t]
        [t (err (format "attempting to deref term ~a of type ~a" e t))])]
    [`(set ,e1 ,e2)
      (match (infer-core e1 Γ)
        [`(Ref ,t)
          (if (check-core e2 t Γ) 'Unit
            (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type"
              e1 t e2 (infer-core e2 Γ))))]
        [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]

    [`(unfold ,e)
      (match (infer-core e Γ)
        [`(μ ,x ,t) (replace t x `(μ ,x ,t))]
        [t (err (format "expected ~a to be recursive, got ~a" e t))])]

    [`(λ (,x : ,t1) ,e)
      (let* ([t2 (infer-core e (dict-set Γ x t1))]
        [t1 (expand t1 Γ)] ; type annotation, must expand
        [k (+ 1 (level-body e (dict-set Γ x t1)))]) ; KNOB
        `(,t1  ,k ,t2))]
    [`(,e1 ,e2)
      (match (infer-core e1 Γ)
        [`(,t1  ,k ,t2)
          (if (check-core e2 t1 Γ) t2
            (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer-core e2 Γ))))]
        [`(,t1  ,t2) (err (format "missing level annotation on function type"))]
        [t (err (format "expected → type on application body, got ~a" t))])]

    [e (err (format "attempting to infer an unknown expression ~a" e))]))

;; Checks if a type is well-formed in the current context.
;; BIG ASSUMPTION: types in the current context are well-formed
;;      (well-formed Type Context): Bool
(define (well-formed t Γ)
  (match t
    [x #:when (dict-has-key? Γ x) #t]
    [(or 'Unit 'Nat 'Bool) #t]
    [`(Ref ,t) (well-formed t Γ)]
    [`(μ ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))]
    [`(type ,x ,t) (well-formed t (dict-set Γ x `(μ ,x ,t)))]
    [(or `(,t1  ,_ ,t2) `(,t1 × ,t2) `(,t1  ,t2))
      (and (well-formed t1 Γ) (well-formed t2 Γ))]
    [_ #f]))

;; Checks if a type is well-kinded with respect to a level in the current context
;; BIG ASSUMPTION: types in the current context are well-formed
;;      (well-kinded Type Level Context): Bool
(define (well-kinded t l Γ)
  (match t
    [x #:when (dict-has-key? Γ x) #t]
    [(or 'Unit 'Nat 'Bool) (>= l 0)]
    [`(Ref ,t)
      (if (zero? l)
        (well-kinded t l Γ)
        (well-kinded t (- l 1) Γ))]
    [`(μ ,x ,t)
      (well-kinded t l (dict-set Γ x `(μ ,x ,t)))]
    [(or `(,t1 × ,t2) `(,t1  ,t2))
      (and (well-kinded t1 l Γ) (well-kinded t2 l Γ))]
    [`(,t1  ,k ,t2)
      (and (>= l k) (well-kinded t1 k Γ) (well-kinded t2 k Γ))]
    [_ #f]))

;; Infers the level of a (well-formed) type.
;;      (level-type Type): Natural
(define (level-type t Γ)
  (match t
    [x #:when (dict-has-key? Γ x)
      (level-type (dict-ref Γ x) Γ)]
    [(or 'Unit 'Nat) 0]
    [(or `(,t1 × ,t2) `(,t1  ,t2))
      (max (level-type t1 Γ) (level-type t2 Γ))]
    [`(μ ,x ,t) ; note: correct but VERY WEIRD
      (level-type t Γ)]
    [`(,t1  ,k ,t2)
      (if (and (>= k (level-type t1 Γ)) (>= k (level-type t2 Γ))) k ; KNOB
        (err (format "annotated level ~a is less than inferred levels of ~a and ~a!" k t1 t2)))]
    [`(Ref ,t)
      (let ([k (level-type t Γ)])
      (if (zero? k) 0 (+ 1 k)))] ; KNOB
    [t #:when (symbol? t) 0])) ; μ-type variables, not in Γ

;; Infers the level of a (well-formed) expression.
;;      (level-body Expr Context): Natural
(define (level-body e Γ)
  (match e
    ['sole 0]
    [n #:when (natural? n) 0]
    [x #:when (dict-has-key? Γ x) ; free variables
      (level-type (expand (dict-ref Γ x) Γ) Γ)]
    [(or `(,e : ,_) `(λ (,_ : ,_) ,e)
      `(inc ,e) `(new ,e) `(! ,e) `(car ,e) `(cdr ,e) `(inl ,e) `(inr ,e)
      `(fold ,e) `(unfold ,e) `(fold (μ ,_ ,_) ,e) `(unfold (μ ,_ ,_) ,e))
      (level-body e Γ)]
    [(or `(set ,e1 ,e2) `(pair ,e1 ,e2) `(,e1 ,e2))
      (max (level-body e1 Γ) (level-body e2 Γ))]
    [(or `(if ,c ,e1 ,e2) `(case ,c (,_  ,e1) (,_  ,e2)))
      (max (level-body c Γ) (level-body e1 Γ) (level-body e2 Γ))]
    [x #:when (symbol? x) 0])) ; local variables, not in Γ

(require rackunit)
(define-test-suite let-set-inc-case
  (check-exn
    exn:fail?
    (λ () (infer '
      (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
      (let (f : (Nat  3 Nat)) (λ x ((! r) x))
      (set r f
      (f 0))))))))

  (check-eq?
    (infer '
      (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
      (let (f : (Nat  3 Nat)) (λ x ((! r) x))
      (f 0)))))
    'Nat)

  (check-eq?
    (check '
      (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
      (let (f : (Nat  3 Nat)) (λ x ((! r) x))
      (f 0))))
      'Nat)
    #t)

  (check-eq? (interpret '(if #t 1 0)) 1)
  (check-eq? (interpret '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 2)
  (check-eq? (infer '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 'Nat)
  (check-true (check '(type Natural Nat ((λ (x : Natural) (inc x)) 1)) 'Nat))

  (check-equal?
    (infer
      '(case ((inr sole) : (Nat  Unit))
        (x  0) (x  1))) 'Nat)

  (check-true
    (check
      '(case ((inr sole) : (Nat  Unit))
        (x  x)
        (x  1)) 'Nat))

  (check-equal?
    (interpret
      '((λ p1 (car (unfold p1)))
        (fold
          (pair 413
          (pair (inl sole)
                (inl sole))))))
    413))

;; initial implementation of doubly linked lists:
;; (type DoublyLinkedList (μ Self (Nat × (((Ref Self) ⊕ Unit) × ((Ref Self) ⊕ Unit)))))
(define-test-suite dll-no-empty-lists
  (check-equal?
    (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
     (let get
      (λ x (car (unfold x)))
     (let my_list
      (fold
        (pair 413
        (pair (inl sole)
              (inl sole))))
     (get my_list)))))
    413)

  (check-equal?
    (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
     (let prev
      (λ x
        (case (car (cdr (unfold x)))
          (x  (inl (! x)))
          (x  (inr sole))))
     (let my_list
      (fold
        (pair 413
        (pair (inl (new sole))
              (inl (new sole)))))
     (prev my_list)))))
    '(inl sole))

  (check-equal?
    (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
     (let next
      (λ x
        (case (cdr (cdr (unfold x)))
          (x  (inl (! x)))
          (x  (inr sole))))
     (let my_list
      (fold
        (pair 413
        (pair (inr (new sole))
              (inr (new sole)))))
     (next my_list)))))
    '(inr sole))

  (check-true
    (equiv-type
      (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
        (λ (self : DoublyLinkedList)
           (case (cdr (cdr (unfold self)))
            (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
            (x  ((inr sole) : (DoublyLinkedList  Unit)))))))
      '(DoublyLinkedList  1 (DoublyLinkedList  Unit))
      #hash((DoublyLinkedList . (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))))))

  (check-true
    (check
      '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
        (λ (self : DoublyLinkedList)
           (case (cdr (cdr (unfold self)))
            (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
            (x  ((inr sole) : (DoublyLinkedList  Unit))))))
      '(DoublyLinkedList  1 (DoublyLinkedList  Unit))))

  (check-equal?
    (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
      (let (get : (DoublyLinkedList  1 Nat))
        (λ self (car (unfold self)))
      (let (prev : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
        (λ self
          (case (car (cdr (unfold self)))
            (x  (inl (! x)))
            (x  (inr sole))))
      (let (next : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
        (λ self
          (case (cdr (cdr (unfold self)))
            (x  (inl (! x)))
            (x  (inr sole))))
      (let (my_list : DoublyLinkedList)
        (fold
          (pair 413
          (pair ((inr sole) : ((Ref DoublyLinkedList)  Unit))
                ((inr sole) : ((Ref DoublyLinkedList)  Unit)))))
      (prev my_list)))))))
    '(DoublyLinkedList  Unit))

  (check-true
    (check '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
      (let (get : (DoublyLinkedList  1 Nat))
        (λ self (car (unfold self)))
      (let (prev : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
        (λ self
          (case (car (cdr (unfold self)))
            (x  (inl (! x)))
            (x  (inr sole))))
      (let (next : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
        (λ self
          (case (cdr (cdr (unfold self)))
            (x  (inl (! x)))
            (x  (inr sole))))
      (let (my_list : DoublyLinkedList)
        (fold
          (pair 413
          (pair ((inr sole) : ((Ref DoublyLinkedList)  Unit))
                ((inr sole) : ((Ref DoublyLinkedList)  Unit)))))
      (prev my_list))))))
      '(DoublyLinkedList  Unit))))

;; new implementation of doubly linked lists:
;; (type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
(define-test-suite dll-with-empty-lists
  (check-equal?
    (interpret
     '(let next
      (λ self
        (case (unfold self)
          (some  (! (cdr (cdr some))))
          (none  (fold (inr sole)))))
     (let my_list
      (fold
        (inl
          (pair 413
          (pair (new (inr sole))
                (new (inr sole))))))
     (next my_list))))
    '(inr sole))

  (check-equal?
    (infer '(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))
      (λ (self : DoublyLinkedList)
         (case (unfold self)
          (some  ((! (cdr (cdr some))) : DoublyLinkedList))
          (none  ((fold (inr sole)) : DoublyLinkedList))))))
    '((μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))  1 (μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))))

  (check-true
    (equiv-type
      (infer '(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))
        (λ (self : DoublyLinkedList)
           (case (unfold self)
            (some  (! (cdr (cdr some))))
            (none  ((fold (inr sole)) : DoublyLinkedList))))))
    '(DoublyLinkedList  1 DoublyLinkedList)
      #hash((DoublyLinkedList . (μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))))))

  (check-true
    (check '(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self)))  Unit))
      (let (get : (DoublyLinkedList  1 (Nat  Unit)))
        (λ self
          (case (unfold self)
            (some  (inl (car some)))
            (none  (inr sole))))
      (let (prev : (DoublyLinkedList  1 DoublyLinkedList))
        (λ self
          (case (unfold self)
            (some  (! (car (cdr some))))
            (none  ((fold (inr sole)) : DoublyLinkedList))))
      (let (next : (DoublyLinkedList  1 DoublyLinkedList))
        (λ self
          (case (unfold self)
            (some  (! (cdr (cdr some))))
            (none  ((fold (inr sole)) : DoublyLinkedList))))
      (let (my_list : DoublyLinkedList)
        (fold (inl
          (pair 413
          (pair (new ((fold (inr sole)) : DoublyLinkedList))
                (new ((fold (inr sole)) : DoublyLinkedList))))))
      (prev my_list))))))
      'DoublyLinkedList)))