aboutsummaryrefslogtreecommitdiff
path: root/stlc-dll.rkt
blob: bdd439bccb19e0d7e762614bf9f3a37dae5bea49 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#lang racket
(require "lib.rkt")
(require rackunit)

;; The Simply-Typed Lambda Calculus with higher-order *impredicative* references,
;; plus sums products booleans ascryption etc, to implement doubly-linked lists

;;      (interpret Expr Table[Sym, Expr] Table[Sym, Expr]): Value
(define (interpret expr [Γ #hash()] [Σ (make-hash)])
  (interpret- (strip (desugar expr)) Γ Σ))
(define (interpret- expr Γ Σ)
  ; (print (format "interpret: ~a" (fmt expr)))
  (match expr
    ['sole 'sole]
    [n #:when (natural? n) n]
    [b #:when (boolean? b) b]
    [r #:when (dict-has-key? Σ r) r]
    [x #:when (dict-has-key? Γ x) (dict-ref Γ x)]

    [`(inc ,e)
      (match (interpret- e Γ Σ)
        [n #:when (natural? n) (+ n 1)]
        [e (format "incrementing an unknown value ~a" e)])]
    [`(if ,c ,e1 ,e2)
      (match (interpret- c Γ Σ)
        ['#t (interpret- e1 Γ Σ)]
        ['#f (interpret- e2 Γ Σ)]
        [e (err (format "calling if on unknown expression ~a" e))])]

    [`(pair ,e1 ,e2)
      `(pair ,(interpret- e1 Γ Σ) ,(interpret- e2 Γ Σ))]
    [`(car ,e)
      (match (interpret- e Γ Σ)
        [`(pair ,e1 ,e2) e1]
        [e (err (format "calling car on unknown expression ~a" e))])]
    [`(cdr ,e)
      (match (interpret- e Γ Σ)
        [`(pair ,e1 ,e2) e2]
        [e (err (format "calling cdr on unknown expression ~a" e))])]

    [`(inl ,e) `(inl ,(interpret- e Γ Σ))]
    [`(inr ,e) `(inr ,(interpret- e Γ Σ))]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (match (interpret- e Γ Σ)
        [`(inl ,e) (interpret- e1 (dict-set Γ x1 e) Σ)]
        [`(inr ,e) (interpret- e2 (dict-set Γ x2 e) Σ)]
        [e (err (format "calling case on unknown expression ~a" e))])]

    [`(new ,e)
      (let ([r (gensym)])
      (dict-set! Σ r e) r)]
    [`(! ,e)
      (let ([r (interpret- e Γ Σ)])
      (if (dict-has-key? Σ r)
        (interpret- (dict-ref Σ r) Γ Σ)
        (err (format "attempting to deref unknown reference ~a" r))))]
    [`(set ,e1 ,e2)
      (let ([r (interpret- e1 Γ Σ)])
      (if (dict-has-key? Σ r) (dict-set! Σ r (interpret- e2 Γ Σ))
        (err (format "attempting to update unknown reference ~a" r))))
      'sole]

    [`(fold ,e) `(fold ,(interpret- e Γ Σ))]
    [`(unfold ,e)
      (match (interpret- e Γ Σ)
        [`(fold ,e) e]
        [e (err (format "attempting to unfold unknown expression ~a" e))])]

    [`(λ ,x ,e) `(λ ,x ,e ,Γ)]
    [`(,e1 ,e2)
      (match (interpret- e1 Γ Σ)
        [`(λ ,x ,e1 ,env)
          (interpret- e1 (dict-set env x (interpret- e2 Γ Σ)) Σ)]
        [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])]

    [e (err (format "attempting to interpret unknown expression ~a" e))]))

;;      (check Expr Type Table[Sym, Type]): Bool
(define (check expr with [Γ #hash()])
  (check-core (desugar expr) with Γ))
(define (check-core expr with Γ)
  ; (print (format "check: ~a with ~a" (fmt expr) with))
  (let ([with (expand with Γ)])
  (match expr
    [`(inl ,e)
      (match with
        [`(,t1  ,t2) (equiv? t1 (infer-core e Γ) Γ Γ)]
        [t #f])]
    [`(inr ,e)
      (match with
        [`(,t1  ,t2) (equiv? t2 (infer-core e Γ) Γ Γ)]
        [t #f])]

    [`(fold (μ ,x ,t) ,e)
      (match with
        [`(μ ,x ,t) (check-core e t (dict-set Γ x `(μ ,x ,t)))])]
    [`(unfold (μ ,x ,t) ,e)
      (and (check-core e `(μ ,x ,t) Γ)
        (equiv? with t #hash() #hash((x . `(μ ,x ,t)))))]

    [`(fold ,e)
      (match with
        [`(μ ,x ,t) (check-core e t (dict-set Γ x `(μ ,x ,t)))])]
    [`(unfold ,e) ; FIXME: GROSS
      (match* ((infer-core e Γ) with)
        [(`(μ ,_ ,t) `(μ ,_ ,t)) #T]
        [(t u) #f])]

    [_ (equiv? with (infer-core expr Γ) Γ Γ)])))

;; Checks if two expressions or types are equivalent, up to α-conversion,
;; given their respective contexts
;; (equiv?
;;   e1, e2: Expr ⊕ Type
;;   Γ1, Γ2: Table[Sym (Expr ⊕ Type)]
;; ): Bool
(define (equiv? e1 e2 Γ1 Γ2)
  (match* (e1 e2)
    ; bound identifiers: if a key exists in the context, look it up
    [(x1 x2) #:when (dict-has-key? Γ1 x1)
      (equiv? (dict-ref Γ1 x1) x2 Γ1 Γ2)]
    [(x1 x2) #:when (dict-has-key? Γ2 x2)
      (equiv? x1 (dict-ref Γ2 x2) Γ1 Γ2)]

    ; recursive types: self-referential names can be arbitrary
    [(`(μ ,x1 ,t1) `(μ ,x2 ,t2))
      (let ([name gensym])
      (equiv? t1 t2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))]
    ; function expressions: parameter names can be arbitrary
    [(`(λ (,x1 : ,t1) ,e1) `(λ (,x2 : ,t2) ,e2))
      (let ([name gensym])
      (and (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name))
        (equiv? t1 t2 Γ1 Γ2)))]
    [(`(λ ,x1 ,e1) `(λ ,x2 ,e2))
      (let ([name gensym])
      (equiv? e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))]

    ; check for syntactic equivalence on lists and values
    [(`(,l1 ...) `(,l2 ...))
      (foldl (λ (x1 x2 acc) (if (equiv? x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
    [(v1 v2) (equal? v1 v2)]))

;;      (infer Expr Table[Sym, Type]): Type
(define (infer expr [Γ #hash()])
  (infer-core (desugar expr) Γ))
(define (infer-core expr Γ)
  ; (print (format "infer: ~a" (fmt expr)))
  (match expr
    ['sole 'Unit]
    [n #:when (natural? n) 'Nat]
    [b #:when (boolean? b) 'Bool]
    [x #:when (dict-has-key? Γ x)
      (dict-ref Γ x)]

    [`(type ,t1 ,t2 ,in)
      (infer-core in (dict-set Γ t1 (expand t2 Γ)))]
    [`(,e : ,t)
      (if (check-core e t Γ) t
        (err (format "annotated expression ~a is not of annotated type ~a" e t)))]

    [`(inc ,e)
      (if (check-core e 'Nat Γ) 'Nat
        (err (format "calling inc on incorrect type ~a" (infer-core e Γ))))]
    [`(if ,c ,e1 ,e2)
      (if (check-core c 'Bool Γ)
        (let ([t (infer-core e1 Γ)])
        (if (check-core e2 t Γ) t
          (err (format "condition has branches of differing types ~a and ~a"
            t (infer-core e2 Γ)))))
        (err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))]

    [`(pair ,e1 ,e2)
      `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))]
    [`(car ,e)
      (match (infer-core e Γ)
        [`(,t1 × ,t2) t1]
        [t (err (format "calling car on incorrect type ~a" t))])]
    [`(cdr ,e)
      (match (infer-core e Γ)
        [`(,t1 × ,t2) t2]
        [t (err (format "calling cdr on incorrect type ~a" t))])]

    [`(inl ,e)
      (err (format "unable to infer the type of a raw inl"))]
    [`(inr ,e)
      (err (format "unable to infer the type of a raw inr"))]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (match (infer-core e Γ)
        [`(,a1  ,a2)
          (let ([b1 (infer-core e1 (dict-set Γ x1 (expand a1 Γ)))]
                [b2 (infer-core e2 (dict-set Γ x2 (expand a2 Γ)))])
            (if (equiv? b1 b2 Γ Γ) b1
              (err (format "case ~a is not of consistent type!" `(case (,a1  ,a2) (,x1  ,b1) (,x2  ,b2))))))]
        [t (err (format "calling case on incorrect type ~a" t))])]

    [`(new ,e)
      `(Ref ,(infer-core e Γ))]
    [`(! ,e)
      (match (infer-core e Γ)
        [`(Ref ,t) t]
        [t (err "attempting to deref term not of Ref type!")])]
    [`(set ,e1 ,e2)
      (match (infer-core e1 Γ)
        [`(Ref ,t)
          (if (check-core e2 t Γ) 'Unit
            (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type"
              e1 t e2 (infer-core e2 Γ))))]
        [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]

    [`(fold (μ ,x ,t) ,e)
      (if (check-core e t (dict-set Γ x `(μ ,x ,t))) `(μ ,x ,t)
        (err (format "expected ~a to be of type ~a, got ~a"
          e t (infer e (dict-set Γ x `(μ ,x ,t))))))]
    [`(unfold (μ ,x ,t) ,e)
      (if (check-core e `(μ ,x ,t)) (replace t x `(μ ,x ,t))
        (err (format "expected ~a to be of type ~a, got ~a"
          e `(μ ,x ,t) (infer-core e Γ))))]

    [`(fold ,e)
      (match (infer-core e Γ)
        [`(μ ,x ,t) `(μ ,x ,t)]
        [t (err (format "expected ~a to be recursive, got ~a" e t))])]
    [`(unfold ,e)
      (match (infer-core e Γ)
        [`(μ ,x ,t) (replace t x `(μ ,x ,t))] ; AAAA
        [t (err (format "expected ~a to be recursive, got ~a" e t))])]

    [`(λ (,x : ,t1) ,e)
      (let ([t2 (infer-core e (dict-set Γ x (expand t1 Γ)))])
        (let ([k (+ 1 (max-level e t1 t2 (dict-set Γ x (expand t1 Γ))))])  ; KNOB
          `(,t1  ,k ,t2)))]
    [`(,e1 ,e2)
      (match (infer-core e1 Γ)
        [`(,t1  ,k ,t2)
          (if (check-core e2 t1 Γ) t2
            (err (format "inferred argument type ~a does not match arg ~a of type ~a" t1 e2 (infer-core e2 Γ))))]
        [`(,t1  ,t2) (err (format "missing level annotation on function type"))]
        [t (err (format "expected → type on application body, got ~a" t))])]

    [e (err (format "attempting to infer an unknown expression ~a" e))]))

;;      (expand Type Table[Id, Expr ⊕ Type]): Type
(define (expand t Γ)
  (if (dict-has-key? Γ t) (dict-ref Γ t) t))

;;      (max-level Table[Sym, Type] Expr Type Type): Natural
(define (max-level e t1 t2 Γ)
  (max
    (level-type t1 Γ)
    (level-type t2 Γ)
    (level-body e Γ)))

;;      (level-type Type): Natural
(define (level-type t Γ)
  (match (expand t Γ)
    ['Unit 0]
    ['Nat 0]
    [`(,t1 × ,t2) (max (level-type t1 Γ) (level-type t2 Γ))]
    [`(,t1  ,t2) (max (level-type t1 Γ) (level-type t2 Γ))]
    [`(μ ,x ,t) (level-type t (dict-set Γ x 'Unit))] ; VERY WEIRD
    [`(,t1  ,k ,t2)
      (if (or (< k (level-type t1 Γ)) (< k (level-type t2 Γ)))
        (err (format "annotated level ~a is less than inferred levels of ~a and ~a!"
          k t1 t2))
        k)]
    [`(Ref ,t)
      (let ([k (level-type t Γ)])
      (if (zero? k) 0 (+ 1 k)))] ; KNOB
    [t (err (format "attempting to infer the level of unknown type ~a" t))]))

;;      (level-body Expr Table[Sym, Type]): Natural
(define (level-body e Γ) ; FIXME: this part is mostly wrong
  (match e
    [`(,e : ,t) (level-type t Γ)] ; hrm
    ['sole 0]
    [n #:when (natural? n) 0]
    [x #:when (dict-has-key? Γ x)
      (level-type (dict-ref Γ x) Γ)]
    [`(inc ,e) (level-body e Γ)]
    [`(new ,e) (level-body e Γ)]

    [`(pair ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))]
    [`(car ,e) (level-body e Γ)]
    [`(cdr ,e) (level-body e Γ)]
    [`(inl ,e) (level-body e Γ)]
    [`(inr ,e) (level-body e Γ)]
    [`(case ,e (,x1  ,e1) (,x2  ,e2))
      (max (level-body e Γ)
           (level-body e1 (dict-set Γ x1 'Unit)) ; FIXME: totally incorrect
           (level-body e2 (dict-set Γ x2 'Unit)))]
    [`(fold (μ ,x ,t) ,e) (level-body e Γ)]
    [`(unfold (μ ,x ,t) ,e) (level-body e Γ)]
    [`(fold ,e) (level-body e Γ)]
    [`(unfold ,e) (level-body e Γ)]

    [`(! ,e) (level-body e Γ)]
    [`(set ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))]
    [`(if ,c ,e1 ,e2) (max (level-body c Γ) (level-body e1 Γ) (level-body e2 Γ))]
    [`(λ (,x : ,t) ,e) (level-body e (dict-set Γ x (expand t Γ)))] ; todo: should be 0?
    [`(,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))]))


(check-exn
  exn:fail?
  (λ () (infer '
    (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
        (let (f : (Nat  3 Nat)) (λ x ((! r) x))
          (set r f
            (f 0))))))))

(check-eq?
  (infer '
    (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
        (let (f : (Nat  3 Nat)) (λ x ((! r) x))
          (f 0)))))
  'Nat)

(check-eq?
  (check '
    (let (id : (Nat  1 Nat)) (λ x x)
      (let (r : (Ref (Nat  1 Nat))) (new id)
        (let (f : (Nat  3 Nat)) (λ x ((! r) x))
          (f 0))))
    'Nat)
  #t)

(check-eq? (interpret '(if #t 1 0)) 1)
(check-eq? (interpret '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 2)
(check-eq? (infer '(type Natural Nat ((λ (x : Natural) (inc x)) 1))) 'Nat)
(check-true (check '(type Natural Nat ((λ (x : Natural) (inc x)) 1)) 'Nat))

(check-equal?
  (infer
    '(case ((inr sole) : (Nat  Unit))
      (x  0) (x  1))) 'Nat)

(check-true
  (check
    '(case ((inr sole) : (Nat  Unit))
      (x  x)
      (x  1)) 'Nat))

(check-equal?
  (interpret
    '((λ (p1 : DoublyLinkedList) (car (unfold p1)))
      (fold
        (pair 413
        (pair ((inl sole) : (Unit  DoublyLinkedList))
              ((inl sole) : (Unit  DoublyLinkedList)))))))
  413)

(check-equal?
  (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
   (let get
    (λ x (car (unfold x)))
   (let my_list
    (fold
      (pair 413
      (pair (inl sole)
            (inl sole))))
   (get my_list)))))
  413)


(check-equal?
  (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
   (let prev
    (λ x
      (case (car (cdr (unfold x)))
        (x  (inl (! x)))
        (x  (inr sole))))
   (let my_list
    (fold
      (pair 413
      (pair (inl (new sole))
            (inl (new sole)))))
   (prev my_list)))))
  '(inl sole))


(check-equal?
  (interpret '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
   (let next
    (λ x
      (case (cdr (cdr (unfold x)))
        (x  (inl (! x)))
        (x  (inr sole))))
   (let my_list
    (fold
      (pair 413
      (pair (inr (new sole))
            (inr (new sole)))))
   (next my_list)))))
  '(inr sole))

(check-equal?
  (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
    (λ (p3 : DoublyLinkedList)
       (case (cdr (cdr (unfold p3)))
        (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
        (x  ((inr sole) : (DoublyLinkedList  Unit)))))))
  '(DoublyLinkedList  1 (DoublyLinkedList  Unit)))

(check-true
  (check
    '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
      (λ (p3 : DoublyLinkedList)
         (case (cdr (cdr (unfold p3)))
          (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
          (x  ((inr sole) : (DoublyLinkedList  Unit))))))
    '(DoublyLinkedList  1 (DoublyLinkedList  Unit))))

(check-equal?
  (infer '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
    (let (get : (DoublyLinkedList  1 Nat))
      (λ (p1 : DoublyLinkedList) (car (unfold p1)))
    (let (prev : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
      (λ (p2 : DoublyLinkedList)
        (case (car (cdr (unfold p2)))
          (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
          (x  ((inr sole) : (DoublyLinkedList  Unit)))))
    (let (next : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
      (λ (p3 : DoublyLinkedList)
        (case (cdr (cdr (unfold p3)))
          (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
          (x  ((inr sole) : (DoublyLinkedList  Unit)))))
    (let (my_list : DoublyLinkedList)
      (fold
        (pair 413
        (pair ((inr sole) : ((Ref DoublyLinkedList)  Unit))
              ((inr sole) : ((Ref DoublyLinkedList)  Unit)))))
    (prev my_list)))))))
  '(DoublyLinkedList  Unit))

(check-true
  (check '(type DoublyLinkedList (μ Self (Nat × (((Ref Self)  Unit) × ((Ref Self)  Unit))))
    (let (get : (DoublyLinkedList  1 Nat))
      (λ (p1 : DoublyLinkedList) (car (unfold p1)))
    (let (prev : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
      (λ (p2 : DoublyLinkedList)
        (case (car (cdr (unfold p2)))
          (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
          (x  ((inr sole) : (DoublyLinkedList  Unit)))))
    (let (next : (DoublyLinkedList  1 (DoublyLinkedList  Unit)))
      (λ (p3 : DoublyLinkedList)
        (case (cdr (cdr (unfold p3)))
          (x  ((inl (! x)) : (DoublyLinkedList  Unit)))
          (x  ((inr sole) : (DoublyLinkedList  Unit)))))
    (let (my_list : DoublyLinkedList)
      (fold
        (pair 413
        (pair ((inr sole) : ((Ref DoublyLinkedList)  Unit))
              ((inr sole) : ((Ref DoublyLinkedList)  Unit)))))
    (prev my_list))))))
    '(DoublyLinkedList  Unit)))