1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
|
#lang racket
(require rackunit)
(require syntax/location)
(require (for-syntax syntax/location))
;; The simply-typed lambda calculus, with:
;; - sums, products, recursive types, ascryption
;; - bidirectional typechecking
;; - impredicative references built on a levels system
;; - explicit level stratification syntax
;; - automatic level collection
;;
;; This system is impredicative. It can be made predicative by tweaking
;; the sections of the code labeled with "KNOB".
(define-syntax-rule (print msg)
(eprintf "~a~%" msg))
(define-syntax-rule (dbg body)
(let ([res body])
(eprintf "[~a:~a] ~v = ~a~%"
(syntax-source-file-name #'body)
(syntax-line #'body)
'body
res)
res))
(define-syntax-rule (err msg)
(error 'error
(format "[~a:~a] ~a"
(syntax-source-file-name #'msg)
(syntax-line #'msg)
msg)))
(define-syntax (todo stx)
(with-syntax ([src (syntax-source-file-name stx)] [line (syntax-line stx)])
#'(error 'todo (format "[~a:~a] unimplemented" src line))))
(define (any? proc lst)
(foldl (λ (x acc) (if (proc x) #t acc)) #f lst))
(define (all? proc lst)
(foldl (λ (x acc) (if (proc x) acc #f)) #t lst))
;; Whether a given level is a syntactically valid level.
;; This does not account for context, and so all symbols are valid levels.
(define (level? level)
(match level
[n #:when (natural? n) #t]
; Symbols are only valid if previously bound (by `level`).
; We can't check that here, however.
[s #:when (symbol? s) #t]
; Levels may be a list of symbols, or a list of symbols followed by a natural.
[`(+ ,l ... ,n) #:when (natural? n)
(all? (λ (s) (symbol? s)) l)]
[`(+ ,l ...)
(all? (λ (s) (symbol? s)) l)]
[_ #f]))
;; Whether a given type is a syntactically valid type.
;; This does not account for context, and so all symbols are valid types.
(define (type? type)
(match type
[(or 'Unit 'Bool 'Nat) #t]
; Symbols are only valid if previously bound (by `type` or `μ`).
; We can't check that here, however.
[s #:when (symbol? s) #t]
[`(Ref ,t) (type? t)]
[(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (type? t1) (type? t2))]
[`(,t1 → ,l ,t2) (and (type? t1) (level? l) (type? t2))]
[`(μ ,x ,t) (and (symbol? x) (type? t))]
[_ #f]))
;; Whether a given expression is a syntactically valid expression.
;; This does not account for context, and so all symbols are valid exprs.
(define (expr? expr)
(match expr
['sole #t]
[n #:when (natural? n) #t]
[b #:when (boolean? b) #t]
; Symbols are only valid if previously bound by `λ` or `case`.
; We can't check that here, however.
[s #:when (symbol? s) #t]
[`(,e : ,t) (and (expr? e) (type? t))]
[`(type ,t1 ,t2 ,e)
(and (type? t1) (type? t2) (expr? e))]
; Note that level must only introduce new variables as levels.
[`(level ,l ,e)
(and (symbol? l) (expr? e))]
; Kind of want to call ⇑ :: on analogy with :
[`(,e ⇑ ,l)
(and (expr? e) (level? l))]
[(or `(new ,e) `(! ,e)) (expr? e)]
; [`(ptr ,a) (symbol? a)]
[`(set ,e1 ,e2) (and (expr? e1) (expr? e2))]
[`(inc ,e) (expr? e)]
[`(if ,c ,e1 ,e2)
(and (expr? c) (expr? e1) (expr? e2))]
[`(pair ,e1 ,e2)
(and (expr? e1) (expr? e2))]
[(or `(car ,e) `(cdr ,e)) (expr? e)]
[(or `(inl ,e) `(inr ,e)) (expr? e)]
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(and (symbol? x1) (symbol? x2)
(expr? c) (expr? e1) (expr? e2))]
[(or `(fold ,e) `(unfold ,e)) (expr? e)]
[`(λ (,x : ,t) ,e)
(and (symbol? x) (type? t) (expr? e))]
[`(,e1 ,e2) (and (expr? e1) (expr? e2))]
[_ #f]))
;; Whether a term is a value or a computation. What's that little rhyme about this again?
;; A value is, a computation/expr/term does?
(define (value? expr)
(match expr
['sole #t]
[n #:when (natural? n) #t]
[b #:when (boolean? b) #t]
; [`(,v : ,t) (and (expr? v) (type? t))]
; [`(type ,t1 ,t2 ,b)
; (and (type? t1) (type? t2) (value? v))]
; [(or `(level ,l ,v) `(,v ⇑ ,l))
; (and (level? l) (value? v))]
[`(ptr ,l ,a) (and (level? l) (symbol? a))]
[`(pair ,v1 ,v2)
(and (value? v1) (value? v2))]
[(or `(inl ,v) `(inr ,v)) (value? v)]
; [(or `(fold ,v) `(unfold ,v)) (value? v)]
[`(λ (,x : ,t) ,e ,env)
(and (symbol? x) (type? t) (expr? e) (dict? env))]
[_ #f]))
(define (ptr? expr)
(match expr
[`(ptr ,l ,a) (and (level? l) (symbol? a))]
[_ #f]))
;; Creates a new multiset from a list.
(define/contract (list->multiset l) (-> list? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? acc x)
(dict-set acc x (+ (dict-ref acc x) 1))
(dict-set acc x 1)))
#hash() l))
;; Creates a new list from a multiset.
(define/contract (multiset->list m) (-> dict? list?)
(foldl
(λ (x acc)
(append acc (build-list (dict-ref m x) (λ (_) x))))
'() (dict-keys m)))
;; Adds a symbol to a multiset.
(define/contract (multiset-add m1 s) (-> dict? symbol? dict?)
(if (dict-has-key? m1 s)
(dict-set m1 s (+ (dict-ref m1 s) 1))
(dict-set m1 s 1)))
;; Queries two multisets for equality.
(define/contract (multiset-eq m1 m2) (-> dict? dict? boolean?)
(if (equal? (length m1) (length m2)) #f
(foldl
(λ (x acc)
(if (and acc (dict-has-key? m1 x))
(equal? (dict-ref m1 x) (dict-ref m2 x))
acc))
#t (dict-keys m2))))
;; Unions two multisets. Shared members take the maximum count of each other.
(define/contract (multiset-union m1 m2) (-> dict? dict? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? acc x)
(dict-set acc x (max (dict-ref acc x) (dict-ref m2 x)))
(dict-set acc x (dict-ref m2 x))))
m1 (dict-keys m2)))
;; Intersects two multisets. Shared members take the minimum count of each other.
(define/contract (multiset-intersect m1 m2) (-> dict? dict? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? m1 x)
(dict-set acc x (min (dict-ref m1 x) (dict-ref m2 x)))
acc))
#hash() (dict-keys m2)))
;; Checks if a level is at its "base" form.
(define/contract (level-base? l) (-> level? boolean?)
(match l
[n #:when (natural? n) (zero? n)]
[s #:when (symbol? s) #t]
[`(+ ,s ... ,n) #:when (natural? n) (zero? n)] ; should be avoided
[`(+ ,s ...) #t]))
;; Syntactic equality between levels is not trivial.
;; This helper function defines it.
(define/contract (level-eq? l1 l2) (-> level? level? boolean?)
(match* (l1 l2)
[(n1 n2) #:when (and (natural? n1) (natural? n2))
(equal? n1 n2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(and (equal? n1 n2) (level-eq? `(+ ,@s1) `(+ ,@s2)))]
[(`(+ ,s1 ...) `(+ ,s2 ...))
(multiset-eq (list->multiset s1) (list->multiset s2))]
[(_ _) #f]))
;; Levels can carry natural numbers, and so we define a stratification between them.
;; Note: this returns FALSE if the levels are incomparable (i.e. (level-geq 'a 'b))
(define/contract (level-geq? l1 l2) (-> level? level? boolean?)
(match* (l1 l2)
[(n1 n2) #:when (and (natural? n1) (natural? n2))
(>= n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
(equal? s1 s2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(and (level-eq? `(+ ,@s1) `(+ ,@s2)) (level-geq? n1 n2))]
[(`(+ ,s1 ... ,n) `(+ ,s2 ...)) #:when (natural? n)
(level-eq? `(+ ,@s1) `(+ ,@s2))]
[(`(+ ,s1 ...) `(+ ,s2 ...))
(multiset-eq (list->multiset s1)
(multiset-intersect (list->multiset s1) (list->multiset s2)))]
[(_ _) #f]))
;; We define a maximum of two levels.
;; This can return one of the two levels or an entirely new level.
(define/contract (level-max l1 l2) (-> level? level? level?)
(match* (l1 l2)
[(n1 n2) #:when (and (natural? n1) (natural? n2))
(max n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
(if (equal? s1 s2) s1 `(+ ,s1 ,s2))]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(if (equal? s1 s2)
`(+ ,@s1 ,(max n1 n2))
(level-union `(+ ,@s1) `(+ ,@s2)))]
[(`(+ ,s1 ... ,n) `(+ ,s2 ...)) #:when (natural? n)
(if (level-geq? s1 s2)
`(+ ,@s1 ,n)
(level-union `(+ ,@s1) `(+ ,@s2)))]
[(`(+ ,s1 ...) `(+ ,s2 ... ,n)) #:when (natural? n)
(if (level-geq? s2 s1)
`(+ ,@s2 ,n)
(level-union `(+ ,@s1) `(+ ,@s2)))]
[(`(+ ,s ... ,n1) n2) #:when (and (natural? n1) (natural? n2))
`(+ ,s ... ,n1)]
[(n1 `(+ ,s ... ,n2)) #:when (and (natural? n1) (natural? n2))
`(+ ,s ... ,n2)]
[(`(+ ,s ...) n) #:when (natural? n)
`(+ ,@s ,n)]
[(n `(+ ,s ...)) #:when (natural? n)
`(+ ,@s ,n)]
[(`(+ ,s1 ...) `(+ ,s2 ...))
(level-union `(+ ,@s1) `(+ ,@s2))]))
;; A helper function to perform the union of levels.
(define/contract (level-union l1 l2) (-> level-base? level-base? level-base?)
(match* (l1 l2)
[(0 l) l]
[(l 0) l]
[(`(+ ,s1 ...) `(+ ,s2 ...))
`(+ ,@(multiset->list (multiset-union (list->multiset s1) (list->multiset s2))))]))
;; We define addition in terms of our syntactic constructs.
(define/contract (level-add l1 l2) (-> level? level? level?)
(match* (l1 l2)
[(n1 n2) #:when (and (natural? n1) (natural? n2))
(+ n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
`(+ ,s1 ,s2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(level-add (level-add `(+ ,@s1) `(+ ,@s2)) (+ n1 n2))]
[(`(+ ,s1 ... ,n) `(+ ,s2 ...)) #:when (natural? n)
(level-add (level-add `(+ ,@s1) `(+ ,@s2)) n)]
[(`(+ ,s1 ...) `(+ ,s2 ... ,n)) #:when (natural? n)
(level-add (level-add `(+ ,@s1) `(+ ,@s2)) n)]
[(`(+ ,s ... ,n1) n2) #:when (and (natural? n1) (natural? n2))
`(+ ,@s ,(+ n1 n2))]
[(n1 `(+ ,s ... ,n2)) #:when (and (natural? n1) (natural? n2))
`(+ ,@s ,(+ n1 n2))]
[(`(+ ,s ...) n) #:when (natural? n)
`(+ ,@s ,n)]
[(n `(+ ,s ...)) #:when (natural? n)
`(+ ,@s ,n)]
[(`(+ ,s1 ...) `(+ ,s2 ...))
`(+ ,@s1 ,@s2)]))
;; Decrements a level by 1.
;; ASSUMPTION: the level is not a base level (i.e. there is some n to dec)
(define/contract (level-dec l) (-> level? level?)
(match l
[n #:when (and (natural? n) (not (zero? n))) (- n 1)]
[`(+ ,s ... 1) `(+ ,@s)]
[`(+ ,s ... ,n) #:when (and (natural? n) (not (zero? n))) `(+ ,@s ,(- n 1))]
[_ (err (format "attempting to decrement base level ~a" l))]))
;; Returns the "base" form of a level.
(define/contract (level-base l) (-> level? level?)
(match l
[n #:when (natural? n) 0]
[s #:when (symbol? s) s]
[`(+ ,s ... ,n) #:when (natural? n) `(+ ,@s)]
[`(+ ,s ...) `(+ ,@s)]))
;; Returns the "offset" portion of a level.
(define/contract (level-offset l) (-> level? level?)
(match l
[n #:when (natural? n) n]
[s #:when (symbol? s) 0]
[`(+ ,s ... ,n) #:when (natural? n) n]
[`(+ ,s ...) 0]))
;; Infers the level of a (well-formed) type in a context.
;; We need the context for type ascryption, and μ-types.
;; Otherwise, levels are syntactically inferred.
;; ASSUMPTION: the type is well-formed in the given context (i.e. all symbols bound).
;; This is not checked via contracts due to (presumably) massive performance overhead.
(define/contract (level-type t Γ) (-> type? dict? level?)
(match t
[(or 'Unit 'Bool 'Nat) 0]
[s #:when (symbol? s) 0] ; HACK: μ-type variables, not in Γ
[`(Ref ,t) ; KNOB
(let ([l (level-type t Γ)])
(if (level-base? l) l
(level-add l 1)))]
[(or `(,t1 × ,t2) `(,t1 ⊕ ,t2))
(level-max (level-type t1 Γ) (level-type t2 Γ))]
[`(,t1 → ,l ,t2) ; KNOB
(if (and (level-geq? l (level-type t1 Γ)) (level-geq? l (level-type t2 Γ))) l
(err (format "annotated level ~a is less than inferred levels ~a and ~a!")))]
[`(μ ,x ,t)
(level-type t (dict-set Γ x `(μ ,x ,t)))]))
;; Infers the level of a (well-formed) expression.
(define/contract (level-expr e Γ) (-> expr? dict? level?)
(match e
['sole 0]
[n #:when (natural? n) 0]
[b #:when (boolean? b) 0]
[x #:when (dict-has-key? Γ x) ; free variables
(level-type (expand-whnf (dict-ref Γ x) Γ) Γ)]
[s #:when (symbol? s) 0] ; local variables
[`(,e : ,t)
(let ([l1 (level-expr e Γ)] [l2 (level-type t Γ)])
(if (level-geq? l1 l2) l1
(err (format "annotated level ~a is less than inferred level ~a!" l1 l2))))]
[`(type ,t1 ,t2 ,e)
(level-expr e (dict-set Γ `(type ,t1) t2))]
[`(level ,l ,e) ; NOTE: is this correct?
(level-expr e Γ)]
[`(,e ⇑ ,l)
(level-add l (level-expr e Γ))]
[`(new ,e) ; KNOB
(let ([l (level-expr e Γ)])
(if (level-base? l) l (level-add l 1)))]
[`(if ,c ,e1 ,e2)
(level-max (level-expr c Γ)
(level-max (level-expr e1 Γ) (level-expr e2 Γ)))]
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(level-max (level-expr c Γ) ; support shadowing
(level-max (level-expr e1 (dict-remove Γ x1))
(level-expr e2 (dict-remove Γ x2))))]
[`(λ (,x : ,_) ,e) ; support shadowing
(level-expr e (dict-remove Γ x))]
[(or `(! ,e)`(inc ,e)
`(car ,e) `(cdr ,e)
`(inl ,e) `(inr ,e)
`(fold ,e) `(unfold ,e))
(level-expr e Γ)]
[(or `(set ,e1 ,e2) `(pair ,e1 ,e2) `(,e1 ,e2))
(level-max (level-expr e1 Γ) (level-expr e2 Γ))]))
;; Whether a given type is a semantically valid type.
;; We assume any type in Γ is semantically valid.
;; Otherwise, we would infinitely recurse re: μ.
(define/contract (well-formed? t Γ) (-> type? dict? boolean?)
(match t
[(or 'Unit 'Bool 'Nat) #t]
[s #:when (symbol? s) (dict-has-key? Γ `(type s))]
[`(Ref ,t) (well-formed? t Γ)]
[(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (well-formed? t1 Γ) (well-formed? t2 Γ))]
[`(,t1 → ,l ,t2)
(and (dict-has-key? Γ `(level ,l))
(well-formed? t1 Γ) (well-formed? t2 Γ))]
[`(μ ,x ,t) ; check: this might infinitely recurse??
(well-formed? t (dict-set Γ `(type ,x) `(μ ,x ,t)))]))
;; Whether a given type at a given level is semantically valid.
(define/contract (well-kinded? t l Γ) (-> type? level? dict? boolean?)
(match t
[(or 'Unit 'Bool 'Nat) (level-geq? l 0)]
[s #:when (symbol? s)
(if (dict-has-key? `(type ,s))
(well-kinded? (dict-ref Γ `(type ,t))) #f)]
[`(Ref ,t) ; FIXME: this is not entirely correct. hrm.
(if (level-base? l)
(well-kinded? t l Γ)
(well-kinded? t (level-dec l) Γ))]
[(or `(,t1 × ,t2) `(,t1 ⊕ ,t2))
(and (well-kinded? t1 l Γ) (well-kinded? t1 l Γ))]
[`(,t1 → ,k ,t2)
(and (level-geq? l k) (well-kinded? t1 k Γ) (well-kinded? t2 k Γ))]
[`(μ ,x ,t) ; HACK
(well-kinded? t l (dict-set Γ `(type ,x) 'Unit))]))
;; Whether a given structure is the heap, in our model.
;; This is a quite useless function and is just here to note the model of the heap.
;; Our heap is a Dict[Level, List[Dict[Addr, Expr]]]. In other words:
;; - the heap is first stratified by algebraic levels, i.e. α, β, α+β, etc
;; - those heaps are then stratified by n: the level as a natural number.
;; - this is
(define (heap? heap)
(match heap
[`((,level-var . (,subheap ...)) ...)
(and (all? (λ (l) (level? l)) level-var)
(all? (λ (n) (dict? n)) subheap))]
[_ #f]))
;; Extends a list to have at least n+1 elements. Takes a default-generating procedure.
(define/contract (list-extend l n default) (-> list? natural? procedure? list?)
(if (>= n (length l))
(build-list (+ n 1)
(λ (k)
(if (< k (length l))
(list-ref l k)
(default))))
l))
;; Models the allocation of an (unsized) memory pointer at an arbitrary heap level.
(define/contract (alloc! Σ l) (-> dict? level? ptr?)
(let ([addr (gensym)] [base (level-base l)] [offset (level-offset l)])
(if (dict-has-key? Σ base)
(let ([base-heap (dict-ref Σ base)])
(if (>= offset (length base-heap))
(dict-set! Σ base ; FIXME: we probably should error if location is occupied
(let ([offset-heap (make-hash)])
(dict-set! offset-heap addr 'null) ; FIXME: probably should not be null
(list-set (list-extend base-heap offset make-hash) offset offset-heap)))
(let ([offset-heap (list-ref base-heap offset)])
(dict-set! offset-heap addr 'null))))
(dict-set! Σ base
(let ([offset-heap (make-hash)])
(dict-set! offset-heap addr 'null)
(list-set (build-list (+ offset 1) (λ (_) (make-hash))) offset offset-heap))))
`(ptr ,l ,addr)))
;; Updates the heap given a pointer to a memory location and a value.
(define/contract (write! Σ p v) (-> dict? ptr? value? ptr?)
(match p
[`(ptr ,l ,a)
(let ([base (level-base l)] [offset (level-offset l)])
(if (dict-has-key? Σ base)
(let ([base-heap (dict-ref Σ base)])
(if (< offset (length base-heap))
(dict-set! (list-ref base-heap offset) a v)
(err (format "writing to invalid memory location ~a!" p))))
(err (format "writing to invalid memory location ~a!" p))))])
p)
;; Returns the corresponding value of a pointer to a memory location on the heap.
(define/contract (read! Σ p) (-> dict? ptr? value?)
(match p
[`(ptr ,l ,a)
(let ([base (level-base l)] [offset (level-offset l)])
(if (dict-has-key? Σ base)
(let ([base-heap (dict-ref Σ base)])
(if (< offset (length base-heap))
(dict-ref (list-ref base-heap offset) a)
(err (format "reading from invalid memory location ~a!" p))))
(err (format "reading from invalid memory location ~a!" p))))]))
;; Models the deallocation of all memory locations of level `l` or higher.
;; For complexity and performance purposes, we only support deallocating base levels.
(define/contract (dealloc! Σ l) (-> dict? level-base? void?)
(for-each
(λ (key) (if (level-geq? key l) (dict-remove! Σ key) (void)))
(dict-keys Σ)))
;; Whether two types are equivalent in a context.
;; We define equivalence as equivalence up to α-renaming.
(define/contract (equiv-type t1 t2 Γ) (-> type? type? dict? boolean?)
(equiv-type-core t1 t2 Γ Γ))
(define (equiv-type-core t1 t2 Γ1 Γ2)
(match* (t1 t2)
; bound identifiers: if a key exists in the context, look it up
[(x1 x2) #:when (dict-has-key? Γ1 `(type ,x1))
(equiv-type-core (dict-ref Γ1 `(type ,x1)) x2 Γ1 Γ2)]
[(x1 x2) #:when (dict-has-key? Γ2 `(type ,x2))
(equiv-type-core x1 (dict-ref Γ2 `(type ,x2)) Γ1 Γ2)]
; recursive types: self-referential names can be arbitrary
[(`(μ ,x1 ,t1) `(μ ,x2 ,t2))
(let ([name gensym])
(equiv-type-core t1 t2 (dict-set Γ1 `(type ,x1) name) (dict-set Γ2 `(type ,x2) name)))]
; check for syntactic equivalence on remaining forms
[(`(,l1 ...) `(,l2 ...))
(foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
[(v1 v2) (equal? v1 v2)]))
;; Whether two expressions are equivalent in a context.
;; We define equivalence as equivalence up to α-renaming.
; (define/contract (equiv-expr e1 e2 Γ) (-> expr? expr? dict? boolean?)
; (equiv-expr-core e1 e2 Γ Γ))
; (define (equiv-expr-core e1 e2 Γ1 Γ2)
; (match* (e1 e2)))
;; Expands a type alias into weak-head normal form, for literal matching.
(define/contract (expand-whnf t Γ) (-> type? dict? type?)
(if (dict-has-key? Γ `(type ,t))
(expand-whnf (dict-ref Γ `(type ,t)) Γ) t))
;; Replaces all references to a type alias with another alias.
(define/contract (replace-type type key value) (-> type? type? type? type?)
(match type
; Do not accidentally replace shadowed bindings
[`(μ ,x _) #:when (equal? x key) type]
[`(,e ...) `(,@(map (λ (x) (replace-type x key value)) e))]
[x #:when (equal? x key) value]
[v v]))
;; Evaluates an expression to a value.
;; Follows the call-by-value evaluation strategy.
(define/contract (call-by-value expr) (-> expr? value?)
(cbv-core expr #hash() (make-hash)))
(define (cbv-core expr Γ Σ) ; ℓ
(match expr
['sole 'sole]
[n #:when (natural? n) n]
[b #:when (boolean? b) b]
[p #:when (dict-has-key? Σ p) p]
[x #:when (dict-has-key? Γ x) (dict-ref Γ x)]
[`(,e : ,t)
(cbv-core e Γ Σ)]
[`(type ,t1 ,t2 ,e)
(cbv-core e (dict-set Γ `(type ,t1) t2) Σ)]
; The (level ...) syntax introduces new level *variables*.
[`(level ,l ,e)
(let ([v (cbv-core e (dict-set Γ `(level ,l) 'level) Σ)])
(dealloc! Σ l) v)] ; they are then freed at the end of scope
[`(,e ⇑ ,l)
(cbv-core e Γ Σ)]
[`(new ,e)
(let ([p (alloc! Σ (level-expr e Γ))])
(write! Σ p (cbv-core e Γ Σ)))]
[`(! ,e)
(match (cbv-core e Γ Σ)
[`(ptr ,l ,a) (read! Σ `(ptr ,l ,a))]
[e (err (format "attempting to deref unknown expression ~a, expected ptr" e))])]
[`(set ,e1 ,e2) ; FIXME: we do NOT check levels before writing here
(match (cbv-core e1 Γ Σ)
[`(ptr ,l ,a) (write! Σ `(ptr ,l ,a) (cbv-core e2 Γ Σ))]
[e (err (format "attempting to write to unknown expression ~a, expected ptr" e))])]
[`(inc ,e)
(match (cbv-core e Γ Σ)
[n #:when (natural? n) (+ n 1)]
[e (err (format "incrementing an unknown value ~a" e))])]
[`(if ,c ,e1 ,e2)
(match (cbv-core c Γ Σ)
['#t (cbv-core e1 Γ Σ)]
['#f (cbv-core e2 Γ Σ)]
[e (err (format "calling if on unknown expression ~a" e))])]
[`(pair ,e1 ,e2)
`(pair ,(cbv-core e1 Γ Σ) ,(cbv-core e2 Γ Σ))]
[`(car ,e)
(match (cbv-core e Γ Σ)
[`(pair ,e1 ,e2) e1]
[e (err (format "calling car on unknown expression ~a" e))])]
[`(cdr ,e)
(match (cbv-core e Γ Σ)
[`(pair ,e1 ,e2) e2]
[e (err (format "calling cdr on unknown expression ~a" e))])]
[`(inl ,e)
`(inl ,(cbv-core e Γ Σ))]
[`(inr ,e)
`(inr ,(cbv-core e Γ Σ))]
[`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (cbv-core e Γ Σ)
[`(inl ,e) (cbv-core e1 (dict-set Γ x1 e) Σ)]
[`(inr ,e) (cbv-core e2 (dict-set Γ x2 e) Σ)]
[e (err (format "calling case on unknown expression ~a" e))])]
[`(fold ,e) `(fold ,(cbv-core e Γ Σ))]
[`(unfold ,e)
(match (cbv-core e Γ Σ)
[`(fold ,e) e]
[e (err (format "attempting to unfold unknown expression ~a" e))])]
[`(λ (,x : ,t) ,e)
`(λ (,x : ,t) ,e ,Γ)]
[`(,e1 ,e2)
(match (cbv-core e1 Γ Σ)
[`(λ (,x : ,t) ,e1 ,env)
(cbv-core e1 (dict-set env x (cbv-core e2 Γ Σ)) Σ)]
[e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])]
[e (err (format "attempting to interpret unknown expression ~a" e))]))
;; Checks that an expression is of a type, and returns #t or #f, or a bubbled-up error.
;; `with` must be a type in weak-head normal form for structural matching.
(define/contract (check expr with) (-> expr? type? boolean?)
(check-core expr with #hash()))
(define (check-core expr with Γ)
(match expr
['sole 'Unit]
[n #:when (natural? n) 'Nat]
[b #:when (boolean? b) 'Bool]
; We expand into weak-head normal form as the binding may be whatever.
[x #:when (dict-has-key? Γ x)
(expand-whnf (dict-ref Γ x) Γ)]
[`(type ,t1 ,t2 ,e)
(check-core e with (dict-set Γ `(type ,t1) t2))]
[`(level ,l ,e) ; We add the level to the context just to note it is valid.
(check-core e with (dict-set Γ `(level ,l) 'level))]
[`(new ,e)
(match with
[`(Ref ,t) (check-core e t Γ)]
[_ #f])]
[`(! ,e)
(check-core e `(Ref ,with) Γ)]
[`(if ,c ,e1 ,e2)
(and (check-core c 'Bool Γ)
(check-core e1 with Γ) (check-core e2 with Γ))]
[`(pair ,e1 ,e2)
(match with
[`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))]
[_ #f])]
[`(inl ,e)
(match with
[`(,t1 ⊕ ,t2) (check-core e t1 Γ)]
[_ #f])]
[`(inr ,e)
(match with
[`(,t1 ⊕ ,t2) (check-core e t2 Γ)]
[_ #f])]
; We do not technically need case in check form.
; We keep it here to avoid needing type annotations on `c`.
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (infer-core c Γ)
[`(,a1 ⊕ ,a2)
(and (check-core e1 with (dict-set Γ x1 a1))
(check-core e2 with (dict-set Γ x2 a2)))]
[_ #f])]
[`(fold ,e)
(match with
[`(μ ,x ,t) (check-core e t (dict-set Γ `(type ,x) `(μ ,x ,t)))]
[_ #f])]
[`(λ (,x : ,t) ,e)
(match with
[`(,t1 → ,l ,t2) ; KNOB
(and (equiv-type t t1 Γ) (check-core e t2 (dict-set Γ x t))
(> l (level-expr e (dict-set Γ x t1))))]
[`(,t1 → ,t2) (err (format "missing level annotation on function type"))]
[_ #f])]
[_ (equiv-type (infer-core expr Γ) with Γ)]))
;; Infers a type from a given expression, if possible. Errors out otherwise.
;; Returns a type in weak-head normal form for structural matching.
(define/contract (infer expr) (-> expr? type?)
(infer-core expr #hash()))
;; Γ is our context: a dictionary from symbols to types??? i forget actually
;; note: our context plays many roles.
(define (infer-core expr Γ)
(match expr
['sole 'Unit]
[n #:when (natural? n) 'Nat]
[b #:when (boolean? b) 'Bool]
; We expand into weak-head normal form as the binding may be to another binding.
[x #:when (dict-has-key? Γ x)
(expand-whnf (dict-ref Γ x) Γ)]
[`(type ,t1 ,t2 ,e)
(infer-core e (dict-set Γ `(type ,t1) t2))]
[`(,e : ,t)
(if (check-core e (expand-whnf t Γ) Γ) (expand-whnf t Γ)
(err (format "expression ~a is not of annotated type ~a" e t)))]
[`(level ,l ,e) ; We add the level to the context just to note it is valid.
(infer-core e (dict-set Γ `(level ,l) 'level))]
[`(,e ⇑ ,l) ; We retrieve the level from the context to check it is valid.
(if (dict-has-key? Γ `(level ,(level-base l)))
(infer-core e Γ)
(err (format "level ~a not found in context, was it introduced?")))]
[`(new ,e)
`(Ref ,(infer-core e Γ))]
[`(ptr ,a)
(err (format "cannot infer type from raw pointer ~a" `(ptr ,a)))]
[`(! ,e)
(match (infer-core e Γ)
[`(Ref ,t) t]
[t (err (format "attempting to deref term ~a of type ~a" e t))])]
[`(set ,e1 ,e2) ; FIXME: this does not account for explicit allocation syntax!
(match (infer-core e1 Γ) ; should we check levels?
[`(Ref ,t)
(if (check-core e2 t Γ) 'Unit
(err (format "attempting to update ~a: ~a with term ~a: ~a of differing type"
e1 t e2 (infer-core e2 Γ))))]
[t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]
[`(inc ,e)
(if (check-core e 'Nat Γ) 'Nat
(err (format "calling inc on incorrect type ~a, expected Nat" (infer-core e Γ))))]
[`(if ,c ,e1 ,e2)
(if (check-core c 'Bool Γ)
(let ([t (infer-core e1 Γ)])
(if (check-core e2 t Γ) t
(err (format "if ~a is not of consistent type!"
`(if Bool ,t ,(infer-core e2 Γ))))))
(err (format "if ~a has incorrect type ~a on condition, expected Bool"
c (infer-core c Γ))))]
[`(pair ,e1 ,e2)
`(,(infer-core e1 Γ) × ,(infer-core e2 Γ))]
[`(car ,e)
(match (infer-core e Γ)
[`(,t1 × ,t2) t1]
[t (err (format "calling car on incorrect type ~a, expected a product" t))])]
[`(cdr ,e)
(match (infer-core e Γ)
[`(,t1 × ,t2) t2]
[t (err (format "calling cdr on incorrect type ~a, expected a product" t))])]
[`(inl ,e)
(err (format "unable to infer the type of a raw inl"))]
[`(inr ,e)
(err (format "unable to infer the type of a raw inr"))]
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (infer-core c Γ)
[`(,a1 ⊕ ,a2)
(let ([b1 (infer-core e1 (dict-set Γ x1 a1))]
[b2 (infer-core e2 (dict-set Γ x2 a2))])
(if (equiv-type b1 b2 Γ) b1
(err (format "case ~a is not of consistent type!"
`(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))]
[t (err (format "case has incorrect type ~a on condition, expected a sum" t))])]
[`(unfold ,e)
(match (infer-core e Γ)
[`(μ ,x ,t) (replace-type t x `(μ ,x ,t))]
[t (err (format "expected ~a to be of recursive type, got ~a" e t))])]
[`(λ (,x : ,t1) ,e) ; KNOB
(let* ([t2 (infer-core e (dict-set Γ x t1))]
[t1 (expand-whnf t1 Γ)] [l (+ 1 (level-expr e (dict-set Γ x t1)))])
`(,t1 → ,l ,t2))]
[`(,e1 ,e2)
(match (infer-core e1 Γ)
[`(,t1 → ,l ,t2) ; should we check levels here? probably redundant
(if (check-core e2 t1 Γ) t2
(err (format "inferred argument type ~a does not match arg ~a of type ~a"
t1 e2 (infer-core e2 Γ))))]
[`(,t1 → ,t2) (err (format "missing level annotation on function type"))]
[t (err (format "expected → type on application body, got ~a" t))])]
[_ (err (format "attempting to infer an unknown expression ~a" expr))]))
;; Define aliases from higher-level constructs to lower-level core forms.
(define (desugar expr)
(match expr
; convenient aliases
['⟨⟩ 'sole]
[`(ref ,e) (desugar `(new ,e))]
[`(deref ,e) (desugar `(! ,e))]
[`(,e :: ,k) (desugar `(,e ⇑ ,k))]
; set-with-continuation
[`(set ,e1 ,e2 ,in)
(desugar `(let (_ : Unit) (set ,e1 ,e2) ,in))]
; many forms of let. this lets us elide many typing annotations
[`(let (,id : (,a → ,k ,b)) (λ (,x : ,a) ,e) ,in)
(desugar `((λ (,id : (,a → ,k ,b)) ,in) (λ (,x : ,a) ,e)))]
[`(let (,id : (,a → ,k ,b)) (λ ,x ,e) ,in)
(desugar `((λ (,id : (,a → ,k ,b)) ,in) (λ (,x : ,a) ,e)))]
[`(let (,id : (,a → ,b)) (λ (,x : ,a) ,e) ,in)
(desugar `((λ (,id : (,a → ,b)) ,in) (λ (,x : ,a) ,e)))]
[`(let (,id : (,a → ,b)) (λ ,x ,e) ,in)
(desugar `((λ (,id : (,a → ,b)) ,in) (λ (,x : ,a) ,e)))]
[`(let ,x (,e : ,t) ,in)
(desugar `((λ (,x : ,t) ,in) (,e : ,t)))]
[`(let ,x ,e ,in)
(desugar `((λ ,x ,in) ,e))]
[`(let ,x ,e)
(desugar `(let ,x ,e sole))]
; desugar all remaining constructions
[`(,e ...) `(,@(map desugar e))]
[e e]))
;; (type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
(check-equal?
(call-by-value (desugar '
(let (next : ((μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) → 1
(μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))
(λ (self : (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
(case (unfold self)
(some ⇒ (! (cdr (cdr some))))
(none ⇒ (fold (inr sole)))))
(let (my_list : (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
(fold
(inl
(pair 413
(pair (new (inr sole))
(new (inr sole))))))
(next my_list)))))
'(inr sole))
(check-equal?
(infer (desugar '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(λ (self : DoublyLinkedList)
(case (unfold self)
(some ⇒ ((! (cdr (cdr some))) : DoublyLinkedList))
(none ⇒ ((fold (inr sole)) : DoublyLinkedList)))))))
'((μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) → 1 (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))
(check-true
(equiv-type
(infer (desugar '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(λ (self : DoublyLinkedList)
(case (unfold self)
(some ⇒ (! (cdr (cdr some))))
(none ⇒ ((fold (inr sole)) : DoublyLinkedList)))))))
'(DoublyLinkedList → 1 DoublyLinkedList)
#hash(((type DoublyLinkedList) . (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))))
(check-true
(check (desugar '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(let (get : (DoublyLinkedList → 1 (Nat ⊕ Unit)))
(λ self
(case (unfold self)
(some ⇒ (inl (car some)))
(none ⇒ (inr sole))))
(let (prev : (DoublyLinkedList → 1 DoublyLinkedList))
(λ self
(case (unfold self)
(some ⇒ (! (car (cdr some))))
(none ⇒ ((fold (inr sole)) : DoublyLinkedList))))
(let (next : (DoublyLinkedList → 1 DoublyLinkedList))
(λ self
(case (unfold self)
(some ⇒ (! (cdr (cdr some))))
(none ⇒ ((fold (inr sole)) : DoublyLinkedList))))
(let (my_list : DoublyLinkedList)
(fold (inl
(pair 413
(pair (new ((fold (inr sole)) : DoublyLinkedList))
(new ((fold (inr sole)) : DoublyLinkedList))))))
(prev my_list)))))))
'DoublyLinkedList))
|