aboutsummaryrefslogtreecommitdiff
path: root/stlc-pred.rkt
blob: 0a4f61fc3dfb12fb32980482f1fe091fb15fe525 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#lang racket
(require "lib.rkt")

;; The Simply-Typed Lambda Calculus with higher-order *predicative* references

(require (only-in "stlc-ref.rkt" interpret))

;;      (check Expr Type Table[Sym, Type]): Bool
(define (check expr with [Γ #hash()])
  (check- (desugar expr) with Γ))
(define (check- expr with Γ)
  ; (print (format "check: ~a" (fmt expr)))
  (match* (expr with)
    [('sole 'Unit) #t]                      ; ↝ Γ ⊢ ⟨⟩: Unit
    [(n 'Nat) #:when (natural? n) #t]       ; ↝ Γ ⊢ n: Nat
    [(x _) #:when (dict-has-key? Γ x)       ; x: τ ∈ Γ → Γ ⊢ x: τ
      (equal? (dict-ref Γ x) with)]

    [(`(new ,e) `(Ref ,t)) (check- e t Γ)]  ; Γ ⊢ e: τ → Γ ⊢ new e: Ref τ
    [(`(! ,e) t) (check- e `(Ref ,t) Γ)]    ; Γ ⊢ e: Ref τ → Γ ⊢ !e: τ
    [(`(set ,e1 ,e2) 'Unit)                 ; ↝ Γ ⊢ e1 := e2: Unit
      (match (infer- e1 Γ)
        [`(Ref ,t) (check- e2 t Γ)]         ; Γ ⊢ e1: Ref τ, Γ ⊢ e2: τ
        [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]

    [(`(λ ,x (: ,t) ,e) `( ,k ,t1 ,t2))    ; ↝ Γ ⊢ λx: τ1.e: τ1 →k τ2
      (and
        (equal? t t1)
        (>= k (max-level e (dict-set Γ x t1) t1 t2))  ; k ≥ max-level(Γ, τ1, τ2) (KNOB)
        (check- e t2 (dict-set Γ x t1)))]             ; Γ, x: τ1 ⊢ e: τ2
    [(`(,e1 ,e2) t)                                   ; ↝ Γ ⊢ (e1 e2): τ2
      (match (infer- e1 Γ)
        [`( ,k ,t1 ,t2)                                  ; Γ ⊢ e1: τ1 →k τ2
          (and (equal? t2 t) (equal? t1 (infer- e2 Γ)))]  ; Γ ⊢ e2: τ1
        [t (err (format "expected → type on application body, got ~a" t))])]

    [(`(λ ,x (: ,t) ,e) `( ,t1 ,t2)) (err "you forgot to add a level annotation dummy")]
    [(e t) (err (format "checking an unknown expression ~a with type ~a" e with))]))

;;      (infer Expr Table[Sym, Type]): Type
(define (infer expr [Γ #hash()])
  (infer- (desugar expr) Γ))
(define (infer- expr Γ)
  ; (print (format "infer: ~a" (fmt expr)))
  (match expr
    ['sole 'Unit]                       ; ↝ Γ ⊢ ⟨⟩: Unit
    [n #:when (natural? n) 'Nat]        ; ↝ Γ ⊢ n: Nat
    [x #:when (dict-has-key? Γ x)       ; x: τ ∈ Γ
      (dict-ref Γ x)]                   ; ↝ Γ ⊢ x: τ

    [`(new ,e) `(Ref ,(infer- e Γ))]    ; Γ ⊢ e: τ → Γ ⊢ new e: Ref τ
    [`(! ,e)
      (match (infer- e Γ)
        [`(Ref ,t) t]                   ; Γ ⊢ e: Ref τ → Γ ⊢ !e: τ
        [t (err "attempting to deref term not of Ref type!")])]
    [`(set ,e1 ,e2)
      (match (infer- e1 Γ)
        [`(Ref ,t)                      ; Γ ⊢ e1: Ref τ, Γ ⊢ e2: τ
          (if (check- e2 t Γ) 'Unit     ; ↝ Γ ⊢ e1 := e2: Unit
            (err (format "attempting to update ~a: ~a with term ~a: ~a of differing type"
              e1 t e2 (infer- e2 Γ))))]
        [t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]

    [`(λ ,x (: ,t1) ,e)
      (let ([t2 (infer- e (dict-set Γ x t1))])            ; Γ, x: τ1 ⊢ e: τ2
        (let ([k (max-level e (dict-set Γ x t1) t1 t2)])  ; k ≥ max-level(Γ, τ1, τ2) (KNOB)
          `( ,k ,t1 ,t2)))]                             ; ↝ Γ ⊢ λx: τ1.e: τ1 →k τ2
    [`(,e1 ,e2)
      (match (infer- e1 Γ)
        [`( ,k ,t1 ,t2)                ; Γ ⊢ e1: τ1 →k τ2
          (if (check- e2 t1 Γ) t2       ; Γ ⊢ e2: τ1 ↝ Γ ⊢ (e1 e2): τ2
            (err (format "inferred argument type ~a does not match arg ~a" t1 e2)))]
        [t (err (format "expected → type on application body, got ~a" t))])]

    [e (err (format "attempting to infer an unknown expression ~a" e))]))

;;      (max-level Table[Sym, Type] Expr Type Type): Natural
(define (max-level e Γ t1 t2)
  (max
    (level-type t1)
    (level-type t2)
    (level-body e Γ)))

;;      (level-type Type): Natural
(define (level-type t)
  (match t
    ['Unit 0]
    ['Nat 0]
    [`( ,k ,t1 ,t2)
      (if (or (< k (level-type t1)) (< k (level-type t2)))
        (err (format "annotated level ~a is less than inferred levels of ~a and ~a!"
          k t1 t2))
        k)]
    [`(Ref ,t) (+ 1 (level-type t))] ; (KNOB)
    [t (err (format "attempting to infer the level of unknown type ~a" t))]))

;;      (level-body Expr Table[Sym, Type]): Natural
(define (level-body e Γ)
  (match e
    ['sole 0]
    [n #:when (natural? n) 0]
    [x #:when (dict-has-key? Γ x)
      (level-type (dict-ref Γ x))]

    [`(new ,e) (level-body e Γ)]
    [`(! ,e) (level-body e Γ)]
    [`(set ,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))]

    [`(λ ,x (: ,t) ,e) (level-body e (dict-set Γ x t))] ; todo: should be 0?
    [`(,e1 ,e2) (max (level-body e1 Γ) (level-body e2 Γ))]
    [e (err (format "attempting to infer the level of unknown expression ~a" e))]))

; simple diverging program in STLC-ref
; https://www.youtube.com/watch?v=XNgE8kBfSz8
#;
(interpret '
  (let id (: ( 0 Nat Nat)) (λ x x)
    (let r (: (Ref ( 0 Nat Nat))) (new id)
      (let f (: ( 1 Nat Nat)) (λ x ((! r) x))
        (set r f
          (f 0))))))
#;
(print (fmt '
  (let id (: ( 0 Nat Nat)) (λ x x)
    (let r (: (Ref ( 0 Nat Nat))) (new id)
      (let f (: ( 1 Nat Nat)) (λ x ((! r) x))
        (set r f
          (f 0)))))))

(require rackunit)
(check-exn
  exn:fail?
  (λ () (infer '
    (let id (: ( 0 Nat Nat)) (λ x x)
      (let r (: (Ref ( 0 Nat Nat))) (new id)
        (let f (: ( 1 Nat Nat)) (λ x ((! r) x))
          (set r f
            (f 0))))))))

(check-eq?
  (infer '
    (let id (: ( 0 Nat Nat)) (λ x x)
      (let r (: (Ref ( 0 Nat Nat))) (new id)
        (let f (: ( 1 Nat Nat)) (λ x ((! r) x))
          (f 0)))))
  'Nat)

(check-eq?
  (check '
    (let id (: ( 0 Nat Nat)) (λ x x)
      (let r (: (Ref ( 0 Nat Nat))) (new id)
        (let f (: ( 1 Nat Nat)) (λ x ((! r) x))
          (f 0))))
    'Nat)
  #t)