summaryrefslogtreecommitdiff
path: root/ling/semantics.md
blob: 1735f86bd33b999baa21ad3c82ce83ecd46af37e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
layout: linguistics
title: linguistics/semantics
---

# semantics and pragmatics

Semantics is the study of **meaning**.

How do we know what sentences are *true* and which are *false*?<br>
What does it *mean* for a sentence to be true?<br>
What *conditions* must hold for a sentence to be true?

<details>
<summary>table of contents</summary>

- History
- Prerequisites
- Basic Principles
  - Compositionality
  - Substitution
  - Predicate Logic & The Lambda Calculus
- Denotational Semantics
  - Entities and Functions
  - Quantification
  - Reference
  - Numbers and Plurality
  - Event Semantics
  - Situation Semantics
- Possible Worlds
  - Necessity and Possibility
  - Knowledge and Belief
  - Command, Request, and Obligation
  - Drawing Distinctions
  - Tense and Aspect
- Beyond Truth
  - Intuitionistic Logic
  - Questions
  - Utterances
- Pragmatics
  - Impliciture
  - Presupposition
  - Performative Acts
- Lexical Semantics

</details>


## History

> the dirty secret of semantics is that 2/3rds of it was created by philosophers\
> and the remaining third is angelika kratzer
>
> -- partialorder

Modern approaches to semantics largely fell out of historical work in logic...
- c.i. lewis
- paul grice
- richard montague
- irene heim
- angelika kratzer
- judith butler

## Prerequisites

Formal semantics builds atop a bevy of concepts in formal logic.
Comfortability with the following concepts will be assumed:
- object languages and meta languages
- zeroth-order/propositional logic
- first-order/predicate logic
- the lambda calculus
- simple types
- logical models
- modal logic
  - possible worlds
  - accessibility relations
- second-order/higher-order logic
- intuitionistic logic

If this is not the case, there are a variety of wonderful resources for learning such topics. I am partial to *An Introduction to Non-Standard Logics* myself, and think it gives a good, syntactic motivation for possible worlds and accessibility relations. I have heard praise for *Boxes and Diamonds* (which is free and open!) but have yet to look at it myself. Wikipedia is also a wonderful reference. Best of all, however, is finding yourself a friend who is a nerd about logic! (thanks alex)

$$∧ ∨ + × ⊕ ↑ ↓ ∼ ¬ ⇁ → ⇒ ⊃ ⊐ ⥽ > ⊢ ⊨$$

## Basic Principles

### Compositionality

The *Principle of Compositionality* states that the meaning of a *constituent* is determined entirely by its *components*. This is *the* fundamental underlying principle behind formal logic and subsequently semantics. It holds for not just sentence composition (syntax), but also *word formation* (morphology), and what's of interest to us here - meaning (semantics).

### Substitution

The *Principle of Substitution* states that substituting one part of an expression with something else of the same meaning *preserves* the meaning of the expression as a whole. This might be thought of as a given, but semantics has its roots in philosophy, and philosophers care very much about enumerating their givens.

### Predicate Logic & The Lambda Calculus

Formal semantics begets a formal system for such semantics, and *first-order logic* and *the lambda calculus* are a natural fit. Semantics is the study of meaning - and what is logic but a system for expressing meaning? As discussed above, language functions by composition - and what are functions but their property of composition?

[*An Invitation to Formal Semantics*](https://eecoppock.info/bootcamp/semantics-boot-camp.pdf) covers basic logic and the lambda calculus well in its first six chapters. Otherwise, for a worse introduction, see [logic](../math/logic), and [the lambda calculus](../plt/lambda-calculus).

## Denotational Semantics

With basic logic and the lambda calculus under our belt, we may simply get straight to assigning *meaning* to language. We consider two *basic types* to start: the type of entities, $e$, and the type of truth values, $t$. Our function types we denote by ordered pairs: that is, a function from $e$ to $t$ is of type $⟨e,t⟩$. This is perhaps clunkier notation than the type-theoretic $e→t$, but it is what it is. (And does avoid issues of precedence.)

### Entities and Functions

> *I am Alice.* <br>
> *Alice is pretty.* <br>
> *The blue pigeon flew away.*

- Noun: $⟨e,t⟩ ↝ λx.Noun(x)$
- Verb (intransitive): $⟨e,t⟩ ↝ λx.Verb(x)$
- Verb (transitive): $⟨e,⟨e,t⟩⟩ ↝ λy.λx.Verb(x, y)$
- Verb (meaningless): $⟨⟨e,t⟩,⟨e,t⟩⟩ ↝ λP.λx.P(x)$
- Adj: $⟨⟨e,t⟩,⟨e,t⟩⟩ ↝ λNoun.λx.[Adj(x) ∧ Noun(x)]$

- or (clausal): $⟨t,⟨t,t⟩⟩ ↝ λq.λp.[p ∨ q]$
- and (clausal): $⟨t,⟨t,t⟩⟩ ↝ λq.λp.[p ∧ q]$
- or (verbal): $⟨⟨e,t⟩,⟨⟨e,t⟩,⟨e,t⟩⟩⟩ ↝ λQ.λP.λx.[P(x) ∨ Q(x)]$
- and (verbal): $⟨⟨e,t⟩,⟨⟨e,t⟩,⟨e,t⟩⟩⟩ ↝ λQ.λP.λx.[P(x) ∧ Q(x)]$
- or (quantifiers): $⟨⟨e,⟨e,t⟩⟩,⟨⟨e,⟨e,t⟩⟩,⟨e,⟨e,t⟩⟩⟩⟩ ↝ λQ.λP.λy.λx.[P(x,y) ∨ Q(x,y)]$
- and (quantifiers): $⟨⟨e,⟨e,t⟩⟩,⟨⟨e,⟨e,t⟩⟩,⟨e,⟨e,t⟩⟩⟩⟩ ↝ λQ.λP.λy.λx.[P(x,y) ∧ Q(x,y)]$

- not: $⟨⟨e,t⟩,⟨e,t⟩⟩ ↝ λP.λx.¬P(x)$

### Quantification

- every: $⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ ↝ λQ.λP.∀x.[P(x) → Q(x)]$
  - everything: $⟨⟨e,t⟩,t⟩ ↝ λP.∀x.P(x)$
- some: $⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ ↝ λQ.λP.∃x.[P(x) ∧ Q(x)]$
  - something: $⟨⟨e,t⟩,t⟩ ↝ λP.∃x.P(x)$
- no: $⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ ↝ λQ.λP.∀x.[P(x) → ¬Q(x)] (or λQ.λP.¬∃x.[P(x) ∧ Q(x)])$
  - nothing: $⟨⟨e,t⟩,t⟩ ↝ λP.¬∃x.P(x)$ (or $λP.∀x.¬P(x)$)

### Reference

### Numbers and Plurality

### Event Semantics

### Tense and Aspect

## Beyond Truth

### Necessity and Possibility

### Command, Request, Obligation

> *Alice, run!* <br>
> *Alice, please run.* <br>
> *Alice should run.*

### Questions
## Resources
- ✨ [Invitation to Formal Semantics](https://eecoppock.info/bootcamp/semantics-boot-camp.pdf)