aboutsummaryrefslogtreecommitdiff
path: root/entries/rxg/fib.rkt
diff options
context:
space:
mode:
authorBraxton Hall2022-10-24 22:22:37 +0000
committerGitHub2022-10-24 22:22:37 +0000
commitb4d8f8e9124e78acb5fa360d1c95633e1091b48b (patch)
tree7dd14589bf361ffb6cd3f2224bd0cb16b332a9a9 /entries/rxg/fib.rkt
parent89bd4035db8c9979b1f3c76a9aee951204f3ef59 (diff)
parent8ffac10bf733f5f75bf85750562710c1cd60cf0a (diff)
Merge pull request #28 from braxtonhall/rxg
Add Ron
Diffstat (limited to 'entries/rxg/fib.rkt')
-rw-r--r--entries/rxg/fib.rkt132
1 files changed, 132 insertions, 0 deletions
diff --git a/entries/rxg/fib.rkt b/entries/rxg/fib.rkt
new file mode 100644
index 0000000..61373cd
--- /dev/null
+++ b/entries/rxg/fib.rkt
@@ -0,0 +1,132 @@
+#lang racket
+
+;; fib.rkt - A variety of iterative implementations of the Fibonacci Sequence
+;; All are based on accumulators
+
+;; Natural -> Natural
+;; produce the n'th Fibonacci number
+(define (fib-iter n)
+ (cond
+ [(= n 0) 1]
+ [(= n 1) 1]
+ [else
+ (let-values ([(n-2 n-1)
+ ;; i-2 = fib (i-2)
+ ;; i-1 = fib (i-1)
+ (for/fold ([i-2 1] [i-1 1])
+ ([i (in-range 2 n)])
+ (values i-1 (+ i-2 i-1)))])
+ (+ n-2 n-1))]))
+
+
+(define (fib-iter2 n)
+ (cond
+ [(= n 0) 1]
+ [(= n 1) 1]
+ [else
+ ;; i-2 = fib (i-2)
+ ;; i-1 = fib (i-1)
+ (let loop ([i-2 1] [i-1 1] [i 2])
+ (if (= i n)
+ (+ i-2 i-1)
+ (loop i-1 (+ i-2 i-1) (add1 i))))]))
+
+(define (fib-iter3 n)
+ (cond
+ [(= n 0) 1]
+ [(= n 1) 1]
+ [else
+ ;; i-2 = fib (i-2)
+ ;; i-1 = fib (i-1)
+ (do ([i-2 1 i-1]
+ [i-1 1 (+ i-2 i-1)]
+ [i 2 (add1 i)])
+ [(= i n)
+ (+ i-2 i-1)])]))
+
+;; New variant of for with accumulators and a final expression in terms of
+;; the accumulators
+(define-syntax (for/acc stx)
+ (syntax-case stx ()
+ [(_ ([id* init*] ...)
+ (clauses ...)
+ body
+ result)
+ (with-syntax ([original stx])
+ #'(let-values ([(id* ...)
+ (for/fold/derived original
+ ([id* init*] ...)
+ (clauses ...)
+ body)])
+ result))]))
+
+(define (fib-iter4 n)
+ (cond
+ [(= n 0) 1]
+ [(= n 1) 1]
+ [else
+ ;; i-2 = fib (i-2)
+ ;; i-1 = fib (i-1)
+ (for/acc ([i-2 1] [i-1 1])
+ ([i (in-range 2 n)])
+ (values i-1 (+ i-2 i-1))
+ (+ i-2 i-1))]))
+
+;; New variant of for with accumulators and a final expression in terms of
+;; the accumulators
+(define-syntax (for/do stx)
+ (syntax-case stx ()
+ [(_ ([id* init* step*] ...)
+ (clauses ...)
+ result)
+ (with-syntax ([original stx])
+ #'(let-values ([(id* ...)
+ (for/fold/derived original
+ ([id* init*] ...)
+ (clauses ...)
+ (values step* ...))])
+ result))]))
+
+(define (fib-iter5 n)
+ (cond
+ [(= n 0) 1]
+ [(= n 1) 1]
+ [else
+ ;; i-2 = fib (i-2)
+ ;; i-1 = fib (i-1)
+ (for/do ([i-2 1 i-1] [i-1 1 (+ i-2 i-1)])
+ ([i (in-range 2 n)])
+ (+ i-2 i-1))]))
+
+
+;; Fibonacci's problem, as described by Greg Rawlins in "Compared to What":
+;; Suppose you have a pair of rabbits and suppose every month each pair
+;; bears a new pair that from the second month on becomes productive.
+;; how many pairs of rabbits will you have in a year?
+
+;; Analysis:
+;; - At time 0 you have 1 unproductive pair: 1 pair, 0 productive pairs
+;; - Each month, each productive pair produces an unproductive pair
+;; - Each month, last months unproductive pairs transition to productive
+;; - how many pairs are there at time step 12?
+
+;; The following function solves the problem *directly* as a
+;; structural recursion over natural numbers with two
+;; accumulators (for lost context (fertile) and result-so-far (total))
+
+;; Natural -> Natural
+;; produce the solution to Fibonacci's problem after n months
+(define (fib-rabbit n0)
+ ;; Accumulator: total is Natural
+ ;; Invariant: total pairs of rabbits after (- n0 n) months
+ ;; Accumulator: fertile is Natural
+ ;; Invariant: productive pairs of rabbits after (- n0 n) months
+ (local [(define (fib-acc fertile total n)
+ (cond [(zero? n) total]
+ [else
+ (fib-acc total ;; next month, all will be productive
+ (+ ;; next months pairs include:
+ total ;; - this months pairs plus
+ fertile) ;; - offspring from productive pairs
+ (sub1 n))]))]
+ (fib-acc 0 1 n0)))