aboutsummaryrefslogtreecommitdiff
path: root/stlc-full.rkt
diff options
context:
space:
mode:
Diffstat (limited to 'stlc-full.rkt')
-rw-r--r--stlc-full.rkt579
1 files changed, 296 insertions, 283 deletions
diff --git a/stlc-full.rkt b/stlc-full.rkt
index b25b56c..0ea8637 100644
--- a/stlc-full.rkt
+++ b/stlc-full.rkt
@@ -9,9 +9,12 @@
;; - impredicative references built on a levels system
;; - explicit level stratification syntax
;; - automatic level collection
-;;
-;; This system is impredicative. It can be made predicative by tweaking
-;; the sections of the code labeled with "KNOB".
+;; - [todo] implicit level stratification
+
+;; Whether the system is *predicative* or *impredicative*.
+;; The predicative system disallows quantification over references.
+;; The impredicative system allows so by tweaking level rules.
+(define impredicative? #f)
(define-syntax-rule (print msg)
(eprintf "~a~%" msg))
@@ -42,116 +45,101 @@
(define (all? proc lst)
(foldl (λ (x acc) (if (proc x) acc #f)) #t lst))
-;; Whether a given level is a syntactically valid level.
-;; This does not account for context, and so all symbols are valid levels.
-(define (level? level)
- (match level
- [n #:when (natural? n) #t]
- ; Symbols are only valid if previously bound (by `level`).
- ; We can't check that here, however.
- [s #:when (symbol? s) #t]
- ; Levels may be a list of symbols, or a list of symbols followed by a natural.
- [`(+ ,l ... ,n) #:when (natural? n)
- (all? (λ (s) (symbol? s)) l)]
- [`(+ ,l ...)
- (all? (λ (s) (symbol? s)) l)]
- [_ #f]))
-
-;; Whether a given type is a syntactically valid type.
-;; This does not account for context, and so all symbols are valid types.
-(define (type? type)
- (match type
- [(or 'Unit 'Bool 'Nat) #t]
- ; Symbols are only valid if previously bound (by `type` or `μ`).
- ; We can't check that here, however.
- [s #:when (symbol? s) #t]
- [`(Ref ,t) (type? t)]
- [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2)) (and (type? t1) (type? t2))]
- [`(,t1 → ,l ,t2) (and (type? t1) (level? l) (type? t2))]
- [`(μ ,x ,t) (and (symbol? x) (type? t))]
- [_ #f]))
-
-;; Whether a given expression is a syntactically valid expression.
+;; Checks an expression for syntactic well-formedness.
;; This does not account for context, and so all symbols are valid exprs.
-(define (expr? expr)
+(define (stlc-full/expr? expr)
(match expr
- ['sole #t]
+ ; Symbols are only valid if previously bound by `λ` or `case` (or if `'sole`).
+ ; We can't check that here, however.
+ [x #:when (symbol? x) #t]
[n #:when (natural? n) #t]
[b #:when (boolean? b) #t]
- ; Symbols are only valid if previously bound by `λ` or `case`.
- ; We can't check that here, however.
- [s #:when (symbol? s) #t]
-
- [`(,e : ,t) (and (expr? e) (type? t))]
+ [`(,e : ,t)
+ (and (stlc-full/expr? e) (stlc-full/type? t))]
[`(type ,t1 ,t2 ,e)
- (and (type? t1) (type? t2) (expr? e))]
-
- ; Note that level must only introduce new variables as levels.
- [`(level ,l ,e)
- (and (symbol? l) (expr? e))]
- ; Kind of want to call ⇑ :: on analogy with :
- [`(,e ⇑ ,l)
- (and (expr? e) (level? l))]
-
- [(or `(new ,e) `(! ,e)) (expr? e)]
- ; [`(ptr ,a) (symbol? a)]
- [`(set ,e1 ,e2) (and (expr? e1) (expr? e2))]
-
- [`(inc ,e) (expr? e)]
+ (and (stlc-full/type? t1) (stlc-full/type? t2) (stlc-full/expr? e))]
+ [`(,e :: ,l)
+ (and (stlc-full/expr? e) (stlc-full/level? l))]
+ [`(level ,l ,e) ; note that level must only introduce new variables as levels
+ (and (symbol? l) (stlc-full/expr? e))]
+ [(or
+ `(inc ,e)
+ `(car ,e) `(cdr ,e)
+ `(inl ,e) `(inr ,e)
+ `(new ,e) `(! ,e)
+ `(fold ,e) `(unfold ,e))
+ (stlc-full/expr? e)]
+ [(or
+ `(pair ,e1 ,e2)
+ `(set ,e1 ,e2)
+ `(,e1 ,e2))
+ (and (stlc-full/expr? e1) (stlc-full/expr? e2))]
[`(if ,c ,e1 ,e2)
- (and (expr? c) (expr? e1) (expr? e2))]
-
- [`(pair ,e1 ,e2)
- (and (expr? e1) (expr? e2))]
- [(or `(car ,e) `(cdr ,e)) (expr? e)]
-
- [(or `(inl ,e) `(inr ,e)) (expr? e)]
+ (and (stlc-full/expr? c) (stlc-full/expr? e1) (stlc-full/expr? e2))]
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(and (symbol? x1) (symbol? x2)
- (expr? c) (expr? e1) (expr? e2))]
-
- [(or `(fold ,e) `(unfold ,e)) (expr? e)]
-
+ (stlc-full/expr? c) (stlc-full/expr? e1) (stlc-full/expr? e2))]
[`(λ (,x : ,t) ,e)
- (and (symbol? x) (type? t) (expr? e))]
- [`(,e1 ,e2) (and (expr? e1) (expr? e2))]
+ (and (symbol? x) (stlc-full/type? t) (stlc-full/expr? e))]
[_ #f]))
-;; Whether a term is a value or a computation. What's that little rhyme about this again?
-;; A value is, a computation/expr/term does?
-(define (value? expr)
+;; Checks a value for syntactic well-formedness.
+;; This does not account for context, and so all symbols are valid values.
+;; A value is, a computation/expr/term does...
+(define (stlc-full/value? expr)
(match expr
- ['sole #t]
+ [x #:when (symbol? x) #t]
[n #:when (natural? n) #t]
[b #:when (boolean? b) #t]
+ [`(ptr ,l ,a)
+ (and (stlc-full/level? l) (symbol? a))]
+ [(or `(inl ,v) `(inr ,v))
+ (stlc-full/value? v)]
+ [(or `(pair ,v1 ,v2) `(,v1 ,v2))
+ (and (stlc-full/value? v1) (stlc-full/value? v2))]
+ [`(λ (,x : ,t) ,e ,env)
+ (and (symbol? x) (stlc-full/type? t) (stlc-full/expr? e) (dict? env))]
+ [_ #f]))
- ; [`(,v : ,t) (and (expr? v) (type? t))]
- ; [`(type ,t1 ,t2 ,b)
- ; (and (type? t1) (type? t2) (value? v))]
-
- ; [(or `(level ,l ,v) `(,v ⇑ ,l))
- ; (and (level? l) (value? v))]
-
- [`(ptr ,l ,a) (and (level? l) (symbol? a))]
-
- [`(pair ,v1 ,v2)
- (and (value? v1) (value? v2))]
-
- [(or `(inl ,v) `(inr ,v)) (value? v)]
-
- ; [(or `(fold ,v) `(unfold ,v)) (value? v)]
+;; Checks a level for syntactic well-formedness.
+;; This does not account for context, and so all symbols are valid levels.
+(define (stlc-full/level? level)
+ (match level
+ ; Symbols are only valid if previously bound (by `level`).
+ ; We can't check that here, however.
+ [x #:when (symbol? x) #t]
+ [n #:when (natural? n) #t]
+ ; Levels may be a list of symbols, or a list of symbols followed by a natural.
+ [`(+ ,l ... ,n) #:when (natural? n)
+ (all? (λ (s) (symbol? s)) l)]
+ [`(+ ,l ...)
+ (all? (λ (s) (symbol? s)) l)]
+ [_ #f]))
- [`(λ (,x : ,t) ,e ,env)
- (and (symbol? x) (type? t) (expr? e) (dict? env))]
+;; Checks a type for syntactic well-formedness.
+;; This does not account for context, and so all symbols are valid types.
+(define (stlc-full/type? type)
+ (match type
+ ; Symbols are only valid if previously bound (by `type` or `μ`).
+ ; We can't check that here, however.
+ [x #:when (symbol? x) #t]
+ [`(Ref ,t) (stlc-full/type? t)]
+ [(or `(,t1 × ,t2) `(,t1 ⊕ ,t2))
+ (and (stlc-full/type? t1) (stlc-full/type? t2))]
+ [`(,t1 → ,l ,t2)
+ (and (stlc-full/type? t1) (stlc-full/level? l) (stlc-full/type? t2))]
+ [`(μ ,x ,t)
+ (and (symbol? x) (stlc-full/type? t))]
[_ #f]))
-(define (ptr? expr)
+(define (stlc-full/ptr? expr)
(match expr
- [`(ptr ,l ,a) (and (level? l) (symbol? a))]
+ [`(ptr ,l ,a) (and (stlc-full/level? l) (symbol? a))]
[_ #f]))
;; Creates a new multiset from a list.
-(define/contract (list->multiset l) (-> list? dict?)
+(define/contract (list->multiset l)
+ (-> list? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? acc x)
@@ -160,20 +148,23 @@
#hash() l))
;; Creates a new list from a multiset.
-(define/contract (multiset->list m) (-> dict? list?)
+(define/contract (multiset->list m)
+ (-> dict? list?)
(foldl
(λ (x acc)
(append acc (build-list (dict-ref m x) (λ (_) x))))
'() (dict-keys m)))
;; Adds a symbol to a multiset.
-(define/contract (multiset-add m1 s) (-> dict? symbol? dict?)
+(define/contract (multiset-add m1 s)
+ (-> dict? symbol? dict?)
(if (dict-has-key? m1 s)
(dict-set m1 s (+ (dict-ref m1 s) 1))
(dict-set m1 s 1)))
;; Queries two multisets for equality.
-(define/contract (multiset-eq m1 m2) (-> dict? dict? boolean?)
+(define/contract (multiset-eq m1 m2)
+ (-> dict? dict? boolean?)
(if (equal? (length m1) (length m2)) #f
(foldl
(λ (x acc)
@@ -183,7 +174,8 @@
#t (dict-keys m2))))
;; Unions two multisets. Shared members take the maximum count of each other.
-(define/contract (multiset-union m1 m2) (-> dict? dict? dict?)
+(define/contract (multiset-union m1 m2)
+ (-> dict? dict? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? acc x)
@@ -192,7 +184,8 @@
m1 (dict-keys m2)))
;; Intersects two multisets. Shared members take the minimum count of each other.
-(define/contract (multiset-intersect m1 m2) (-> dict? dict? dict?)
+(define/contract (multiset-intersect m1 m2)
+ (-> dict? dict? dict?)
(foldl
(λ (x acc)
(if (dict-has-key? m1 x)
@@ -201,16 +194,18 @@
#hash() (dict-keys m2)))
;; Checks if a level is at its "base" form.
-(define/contract (level-base? l) (-> level? boolean?)
+(define/contract (level-base? l)
+ (-> stlc-full/level? boolean?)
(match l
- [n #:when (natural? n) (zero? n)]
[s #:when (symbol? s) #t]
+ [n #:when (natural? n) (zero? n)]
[`(+ ,s ... ,n) #:when (natural? n) (zero? n)] ; should be avoided
[`(+ ,s ...) #t]))
;; Syntactic equality between levels is not trivial.
;; This helper function defines it.
-(define/contract (level-eq? l1 l2) (-> level? level? boolean?)
+(define/contract (level-eq? l1 l2)
+ (-> stlc-full/level? stlc-full/level? boolean?)
(match* (l1 l2)
[(n1 n2) #:when (and (natural? n1) (natural? n2))
(equal? n1 n2)]
@@ -222,12 +217,13 @@
;; Levels can carry natural numbers, and so we define a stratification between them.
;; Note: this returns FALSE if the levels are incomparable (i.e. (level-geq 'a 'b))
-(define/contract (level-geq? l1 l2) (-> level? level? boolean?)
+(define/contract (level-geq? l1 l2)
+ (-> stlc-full/level? stlc-full/level? boolean?)
(match* (l1 l2)
- [(n1 n2) #:when (and (natural? n1) (natural? n2))
- (>= n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
(equal? s1 s2)]
+ [(n1 n2) #:when (and (natural? n1) (natural? n2))
+ (>= n1 n2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(and (level-eq? `(+ ,@s1) `(+ ,@s2)) (level-geq? n1 n2))]
[(`(+ ,s1 ... ,n) `(+ ,s2 ...)) #:when (natural? n)
@@ -239,12 +235,13 @@
;; We define a maximum of two levels.
;; This can return one of the two levels or an entirely new level.
-(define/contract (level-max l1 l2) (-> level? level? level?)
+(define/contract (level-max l1 l2)
+ (-> stlc-full/level? stlc-full/level? stlc-full/level?)
(match* (l1 l2)
- [(n1 n2) #:when (and (natural? n1) (natural? n2))
- (max n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
(if (equal? s1 s2) s1 `(+ ,s1 ,s2))]
+ [(n1 n2) #:when (and (natural? n1) (natural? n2))
+ (max n1 n2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(if (equal? s1 s2)
`(+ ,@s1 ,(max n1 n2))
@@ -269,7 +266,8 @@
(level-union `(+ ,@s1) `(+ ,@s2))]))
;; A helper function to perform the union of levels.
-(define/contract (level-union l1 l2) (-> level-base? level-base? level-base?)
+(define/contract (level-union l1 l2)
+ (-> level-base? level-base? level-base?)
(match* (l1 l2)
[(0 l) l]
[(l 0) l]
@@ -277,12 +275,13 @@
`(+ ,@(multiset->list (multiset-union (list->multiset s1) (list->multiset s2))))]))
;; We define addition in terms of our syntactic constructs.
-(define/contract (level-add l1 l2) (-> level? level? level?)
+(define/contract (level-add l1 l2)
+ (-> stlc-full/level? stlc-full/level? stlc-full/level?)
(match* (l1 l2)
- [(n1 n2) #:when (and (natural? n1) (natural? n2))
- (+ n1 n2)]
[(s1 s2) #:when (and (symbol? s1) (symbol? s2))
`(+ ,s1 ,s2)]
+ [(n1 n2) #:when (and (natural? n1) (natural? n2))
+ (+ n1 n2)]
[(`(+ ,s1 ... ,n1) `(+ ,s2 ... ,n2)) #:when (and (natural? n1) (natural? n2))
(level-add (level-add `(+ ,@s1) `(+ ,@s2)) (+ n1 n2))]
[(`(+ ,s1 ... ,n) `(+ ,s2 ...)) #:when (natural? n)
@@ -302,7 +301,8 @@
;; Decrements a level by 1.
;; ASSUMPTION: the level is not a base level (i.e. there is some n to dec)
-(define/contract (level-dec l) (-> level? level?)
+(define/contract (level-dec l)
+ (-> stlc-full/level? stlc-full/level?)
(match l
[n #:when (and (natural? n) (not (zero? n))) (- n 1)]
[`(+ ,s ... 1) `(+ ,@s)]
@@ -310,18 +310,20 @@
[_ (err (format "attempting to decrement base level ~a" l))]))
;; Returns the "base" form of a level.
-(define/contract (level-base l) (-> level? level?)
+(define/contract (level-base l)
+ (-> stlc-full/level? stlc-full/level?)
(match l
- [n #:when (natural? n) 0]
[s #:when (symbol? s) s]
+ [n #:when (natural? n) 0]
[`(+ ,s ... ,n) #:when (natural? n) `(+ ,@s)]
[`(+ ,s ...) `(+ ,@s)]))
;; Returns the "offset" portion of a level.
-(define/contract (level-offset l) (-> level? level?)
+(define/contract (level-offset l)
+ (-> stlc-full/level? stlc-full/level?)
(match l
- [n #:when (natural? n) n]
[s #:when (symbol? s) 0]
+ [n #:when (natural? n) n]
[`(+ ,s ... ,n) #:when (natural? n) n]
[`(+ ,s ...) 0]))
@@ -330,30 +332,32 @@
;; Otherwise, levels are syntactically inferred.
;; ASSUMPTION: the type is well-formed in the given context (i.e. all symbols bound).
;; This is not checked via contracts due to (presumably) massive performance overhead.
-(define/contract (level-type t Γ) (-> type? dict? level?)
+(define/contract (level-type t Γ)
+ (-> stlc-full/type? dict? stlc-full/level?)
(match t
[(or 'Unit 'Bool 'Nat) 0]
[s #:when (symbol? s) 0] ; HACK: μ-type variables, not in Γ
- [`(Ref ,t) ; KNOB
+ [`(Ref ,t)
(let ([l (level-type t Γ)])
- (if (level-base? l) l
- (level-add l 1)))]
+ (if (and impredicative? (level-base? l))
+ l (level-add l 1)))]
[(or `(,t1 × ,t2) `(,t1 ⊕ ,t2))
(level-max (level-type t1 Γ) (level-type t2 Γ))]
- [`(,t1 → ,l ,t2) ; KNOB
+ [`(,t1 → ,l ,t2) ; FIXME: knob??
(if (and (level-geq? l (level-type t1 Γ)) (level-geq? l (level-type t2 Γ))) l
(err (format "annotated level ~a is less than inferred levels ~a and ~a!")))]
[`(μ ,x ,t)
(level-type t (dict-set Γ x `(μ ,x ,t)))]))
;; Infers the level of a (well-formed) expression.
-(define/contract (level-expr e Γ) (-> expr? dict? level?)
+(define/contract (level-expr e Γ)
+ (-> stlc-full/expr? dict? stlc-full/level?)
(match e
['sole 0]
[n #:when (natural? n) 0]
[b #:when (boolean? b) 0]
[x #:when (dict-has-key? Γ x) ; free variables
- (level-type (expand-whnf (dict-ref Γ x) Γ) Γ)]
+ (level-type (type->whnf (dict-ref Γ x) Γ) Γ)]
[s #:when (symbol? s) 0] ; local variables
[`(,e : ,t)
@@ -365,12 +369,12 @@
[`(level ,l ,e) ; NOTE: is this correct?
(level-expr e Γ)]
- [`(,e ⇑ ,l)
+ [`(,e :: ,l)
(level-add l (level-expr e Γ))]
- [`(new ,e) ; KNOB
+ [`(new ,e) ; FIXME; knob??
(let ([l (level-expr e Γ)])
- (if (level-base? l) l (level-add l 1)))]
+ (if (level-base? l) l (level-add l 1)))]
[`(if ,c ,e1 ,e2)
(level-max (level-expr c Γ)
@@ -393,7 +397,8 @@
;; Whether a given type is a semantically valid type.
;; We assume any type in Γ is semantically valid.
;; Otherwise, we would infinitely recurse re: μ.
-(define/contract (well-formed? t Γ) (-> type? dict? boolean?)
+(define/contract (well-formed? t Γ)
+ (-> stlc-full/type? dict? boolean?)
(match t
[(or 'Unit 'Bool 'Nat) #t]
[s #:when (symbol? s) (dict-has-key? Γ `(type s))]
@@ -406,7 +411,8 @@
(well-formed? t (dict-set Γ `(type ,x) `(μ ,x ,t)))]))
;; Whether a given type at a given level is semantically valid.
-(define/contract (well-kinded? t l Γ) (-> type? level? dict? boolean?)
+(define/contract (well-kinded? t l Γ)
+ (-> stlc-full/type? stlc-full/level? dict? boolean?)
(match t
[(or 'Unit 'Bool 'Nat) (level-geq? l 0)]
[s #:when (symbol? s)
@@ -428,16 +434,17 @@
;; Our heap is a Dict[Level, List[Dict[Addr, Expr]]]. In other words:
;; - the heap is first stratified by algebraic levels, i.e. α, β, α+β, etc
;; - those heaps are then stratified by n: the level as a natural number.
-;; - this is
-(define (heap? heap)
+#;
+(define (stlc-full/heap? heap)
(match heap
[`((,level-var . (,subheap ...)) ...)
- (and (all? (λ (l) (level? l)) level-var)
+ (and (all? (λ (l) (stlc-full/level? l)) level-var)
(all? (λ (n) (dict? n)) subheap))]
[_ #f]))
;; Extends a list to have at least n+1 elements. Takes a default-generating procedure.
-(define/contract (list-extend l n default) (-> list? natural? procedure? list?)
+(define/contract (list-extend l n default)
+ (-> list? natural? procedure? list?)
(if (>= n (length l))
(build-list (+ n 1)
(λ (k)
@@ -447,91 +454,101 @@
l))
;; Models the allocation of an (unsized) memory pointer at an arbitrary heap level.
-(define/contract (alloc! Σ l) (-> dict? level? ptr?)
+(define/contract (alloc! Σ l)
+ (-> dict? stlc-full/level? stlc-full/ptr?)
(let ([addr (gensym)] [base (level-base l)] [offset (level-offset l)])
- (if (dict-has-key? Σ base)
- (let ([base-heap (dict-ref Σ base)])
- (if (>= offset (length base-heap))
- (dict-set! Σ base ; FIXME: we probably should error if location is occupied
- (let ([offset-heap (make-hash)])
- (dict-set! offset-heap addr 'null) ; FIXME: probably should not be null
- (list-set (list-extend base-heap offset make-hash) offset offset-heap)))
- (let ([offset-heap (list-ref base-heap offset)])
- (dict-set! offset-heap addr 'null))))
- (dict-set! Σ base
+ (if (dict-has-key? Σ base)
+ (let ([base-heap (dict-ref Σ base)])
+ (if (>= offset (length base-heap))
+ (dict-set! Σ base ; FIXME: we probably should error if location is occupied
(let ([offset-heap (make-hash)])
- (dict-set! offset-heap addr 'null)
- (list-set (build-list (+ offset 1) (λ (_) (make-hash))) offset offset-heap))))
- `(ptr ,l ,addr)))
+ (dict-set! offset-heap addr 'null) ; FIXME: probably should not be null
+ (list-set (list-extend base-heap offset make-hash) offset offset-heap)))
+ (let ([offset-heap (list-ref base-heap offset)])
+ (dict-set! offset-heap addr 'null))))
+ (dict-set! Σ base
+ (let ([offset-heap (make-hash)])
+ (dict-set! offset-heap addr 'null)
+ (list-set (build-list (+ offset 1) (λ (_) (make-hash))) offset offset-heap))))
+ `(ptr ,l ,addr)))
;; Updates the heap given a pointer to a memory location and a value.
-(define/contract (write! Σ p v) (-> dict? ptr? value? ptr?)
+(define/contract (write! Σ p v)
+ (-> dict? stlc-full/ptr? stlc-full/value? stlc-full/ptr?)
(match p
[`(ptr ,l ,a)
(let ([base (level-base l)] [offset (level-offset l)])
- (if (dict-has-key? Σ base)
- (let ([base-heap (dict-ref Σ base)])
- (if (< offset (length base-heap))
- (dict-set! (list-ref base-heap offset) a v)
- (err (format "writing to invalid memory location ~a!" p))))
- (err (format "writing to invalid memory location ~a!" p))))])
+ (if (dict-has-key? Σ base)
+ (let ([base-heap (dict-ref Σ base)])
+ (if (< offset (length base-heap))
+ (dict-set! (list-ref base-heap offset) a v)
+ (err (format "writing to invalid memory location ~a!" p))))
+ (err (format "writing to invalid memory location ~a!" p))))])
p)
;; Returns the corresponding value of a pointer to a memory location on the heap.
-(define/contract (read! Σ p) (-> dict? ptr? value?)
+(define/contract (read! Σ p)
+ (-> dict? stlc-full/ptr? stlc-full/value?)
(match p
[`(ptr ,l ,a)
(let ([base (level-base l)] [offset (level-offset l)])
- (if (dict-has-key? Σ base)
- (let ([base-heap (dict-ref Σ base)])
- (if (< offset (length base-heap))
- (dict-ref (list-ref base-heap offset) a)
- (err (format "reading from invalid memory location ~a!" p))))
- (err (format "reading from invalid memory location ~a!" p))))]))
+ (if (dict-has-key? Σ base)
+ (let ([base-heap (dict-ref Σ base)])
+ (if (< offset (length base-heap))
+ (dict-ref (list-ref base-heap offset) a)
+ (err (format "reading from invalid memory location ~a!" p))))
+ (err (format "reading from invalid memory location ~a!" p))))]))
;; Models the deallocation of all memory locations of level `l` or higher.
;; For complexity and performance purposes, we only support deallocating base levels.
-(define/contract (dealloc! Σ l) (-> dict? level-base? void?)
+(define/contract (dealloc! Σ l)
+ (-> dict? level-base? void?)
(for-each
- (λ (key) (if (level-geq? key l) (dict-remove! Σ key) (void)))
+ (λ (key)
+ (if (level-geq? key l)
+ (dict-remove! Σ key) (void)))
(dict-keys Σ)))
;; Whether two types are equivalent in a context.
;; We define equivalence as equivalence up to α-renaming.
-(define/contract (equiv-type t1 t2 Γ) (-> type? type? dict? boolean?)
- (equiv-type-core t1 t2 Γ Γ))
-(define (equiv-type-core t1 t2 Γ1 Γ2)
+(define/contract (equiv-type t1 t2 Γ)
+ (-> stlc-full/type? stlc-full/type? dict? boolean?)
+ (equiv-type/core t1 t2 Γ Γ))
+(define (equiv-type/core t1 t2 Γ1 Γ2)
(match* (t1 t2)
; bound identifiers: if a key exists in the context, look it up
[(x1 x2) #:when (dict-has-key? Γ1 `(type ,x1))
- (equiv-type-core (dict-ref Γ1 `(type ,x1)) x2 Γ1 Γ2)]
+ (equiv-type/core (dict-ref Γ1 `(type ,x1)) x2 Γ1 Γ2)]
[(x1 x2) #:when (dict-has-key? Γ2 `(type ,x2))
- (equiv-type-core x1 (dict-ref Γ2 `(type ,x2)) Γ1 Γ2)]
+ (equiv-type/core x1 (dict-ref Γ2 `(type ,x2)) Γ1 Γ2)]
; recursive types: self-referential names can be arbitrary
[(`(μ ,x1 ,t1) `(μ ,x2 ,t2))
(let ([name gensym])
- (equiv-type-core t1 t2 (dict-set Γ1 `(type ,x1) name) (dict-set Γ2 `(type ,x2) name)))]
+ (equiv-type/core t1 t2 (dict-set Γ1 `(type ,x1) name) (dict-set Γ2 `(type ,x2) name)))]
; check for syntactic equivalence on remaining forms
[(`(,l1 ...) `(,l2 ...))
- (foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
+ (foldl (λ (x1 x2 acc) (if (equiv-type/core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
[(v1 v2) (equal? v1 v2)]))
;; Whether two expressions are equivalent in a context.
;; We define equivalence as equivalence up to α-renaming.
-; (define/contract (equiv-expr e1 e2 Γ) (-> expr? expr? dict? boolean?)
+; (define/contract (equiv-expr e1 e2 Γ)
+; (-> stlc-full/expr? stlc-full/expr? dict? boolean?)
; (equiv-expr-core e1 e2 Γ Γ))
; (define (equiv-expr-core e1 e2 Γ1 Γ2)
; (match* (e1 e2)))
;; Expands a type alias into weak-head normal form, for literal matching.
-(define/contract (expand-whnf t Γ) (-> type? dict? type?)
+(define/contract (type->whnf t Γ)
+ (-> stlc-full/type? dict? stlc-full/type?)
(if (dict-has-key? Γ `(type ,t))
- (expand-whnf (dict-ref Γ `(type ,t)) Γ) t))
+ (type->whnf (dict-ref Γ `(type ,t)) Γ) t))
;; Replaces all references to a type alias with another alias.
-(define/contract (replace-type type key value) (-> type? type? type? type?)
+(define/contract (replace-type type key value)
+ (-> stlc-full/type? stlc-full/type? stlc-full/type? stlc-full/type?)
(match type
; Do not accidentally replace shadowed bindings
[`(μ ,x _) #:when (equal? x key) type]
@@ -541,218 +558,216 @@
;; Evaluates an expression to a value.
;; Follows the call-by-value evaluation strategy.
-(define/contract (call-by-value expr) (-> expr? value?)
- (cbv-core expr #hash() (make-hash)))
-(define (cbv-core expr Γ Σ) ; ℓ
+(define (call-by-value expr)
+ (cbv/core (desugar expr) #hash() (make-hash)))
+(define/contract (cbv/core expr Γ Σ) ; ℓ
+ (-> stlc-full/expr? dict? dict? stlc-full/value?)
(match expr
['sole 'sole]
[n #:when (natural? n) n]
[b #:when (boolean? b) b]
[p #:when (dict-has-key? Σ p) p]
[x #:when (dict-has-key? Γ x) (dict-ref Γ x)]
+ [f #:when (symbol? f) f]
[`(,e : ,t)
- (cbv-core e Γ Σ)]
+ (cbv/core e Γ Σ)]
[`(type ,t1 ,t2 ,e)
- (cbv-core e (dict-set Γ `(type ,t1) t2) Σ)]
+ (cbv/core e (dict-set Γ `(type ,t1) t2) Σ)]
; The (level ...) syntax introduces new level *variables*.
[`(level ,l ,e)
- (let ([v (cbv-core e (dict-set Γ `(level ,l) 'level) Σ)])
- (dealloc! Σ l) v)] ; they are then freed at the end of scope
- [`(,e ⇑ ,l)
- (cbv-core e Γ Σ)]
+ (let ([v (cbv/core e (dict-set Γ `(level ,l) 'level) Σ)])
+ (dealloc! Σ l) v)] ; they are then freed at the end of scope
+ [`(,e :: ,l)
+ (cbv/core e Γ Σ)]
[`(new ,e)
(let ([p (alloc! Σ (level-expr e Γ))])
- (write! Σ p (cbv-core e Γ Σ)))]
+ (write! Σ p (cbv/core e Γ Σ)))]
[`(! ,e)
- (match (cbv-core e Γ Σ)
+ (match (cbv/core e Γ Σ)
[`(ptr ,l ,a) (read! Σ `(ptr ,l ,a))]
[e (err (format "attempting to deref unknown expression ~a, expected ptr" e))])]
[`(set ,e1 ,e2) ; FIXME: we do NOT check levels before writing here
- (match (cbv-core e1 Γ Σ)
- [`(ptr ,l ,a) (write! Σ `(ptr ,l ,a) (cbv-core e2 Γ Σ))]
+ (match (cbv/core e1 Γ Σ)
+ [`(ptr ,l ,a) (write! Σ `(ptr ,l ,a) (cbv/core e2 Γ Σ))]
[e (err (format "attempting to write to unknown expression ~a, expected ptr" e))])]
[`(inc ,e)
- (match (cbv-core e Γ Σ)
+ (match (cbv/core e Γ Σ)
[n #:when (natural? n) (+ n 1)]
[e (err (format "incrementing an unknown value ~a" e))])]
[`(if ,c ,e1 ,e2)
- (match (cbv-core c Γ Σ)
- ['#t (cbv-core e1 Γ Σ)]
- ['#f (cbv-core e2 Γ Σ)]
+ (match (cbv/core c Γ Σ)
+ ['#t (cbv/core e1 Γ Σ)]
+ ['#f (cbv/core e2 Γ Σ)]
[e (err (format "calling if on unknown expression ~a" e))])]
[`(pair ,e1 ,e2)
- `(pair ,(cbv-core e1 Γ Σ) ,(cbv-core e2 Γ Σ))]
+ `(pair ,(cbv/core e1 Γ Σ) ,(cbv/core e2 Γ Σ))]
[`(car ,e)
- (match (cbv-core e Γ Σ)
+ (match (cbv/core e Γ Σ)
[`(pair ,e1 ,e2) e1]
[e (err (format "calling car on unknown expression ~a" e))])]
[`(cdr ,e)
- (match (cbv-core e Γ Σ)
+ (match (cbv/core e Γ Σ)
[`(pair ,e1 ,e2) e2]
[e (err (format "calling cdr on unknown expression ~a" e))])]
[`(inl ,e)
- `(inl ,(cbv-core e Γ Σ))]
+ `(inl ,(cbv/core e Γ Σ))]
[`(inr ,e)
- `(inr ,(cbv-core e Γ Σ))]
+ `(inr ,(cbv/core e Γ Σ))]
[`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
- (match (cbv-core e Γ Σ)
- [`(inl ,e) (cbv-core e1 (dict-set Γ x1 e) Σ)]
- [`(inr ,e) (cbv-core e2 (dict-set Γ x2 e) Σ)]
+ (match (cbv/core e Γ Σ)
+ [`(inl ,e) (cbv/core e1 (dict-set Γ x1 e) Σ)]
+ [`(inr ,e) (cbv/core e2 (dict-set Γ x2 e) Σ)]
[e (err (format "calling case on unknown expression ~a" e))])]
- [`(fold ,e) `(fold ,(cbv-core e Γ Σ))]
+ [`(fold ,e) `(fold ,(cbv/core e Γ Σ))]
[`(unfold ,e)
- (match (cbv-core e Γ Σ)
+ (match (cbv/core e Γ Σ)
[`(fold ,e) e]
[e (err (format "attempting to unfold unknown expression ~a" e))])]
[`(λ (,x : ,t) ,e)
`(λ (,x : ,t) ,e ,Γ)]
[`(,e1 ,e2)
- (match (cbv-core e1 Γ Σ)
+ (match (cbv/core e1 Γ Σ)
[`(λ (,x : ,t) ,e1 ,env)
- (cbv-core e1 (dict-set env x (cbv-core e2 Γ Σ)) Σ)]
- [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])]
-
- [e (err (format "attempting to interpret unknown expression ~a" e))]))
+ (cbv/core e1 (dict-set env x (cbv/core e2 Γ Σ)) Σ)]
+ [e1 (err (format "attempting to interpret arg ~a applied to unknown expression ~a" e2 e1))])]))
;; Checks that an expression is of a type, and returns #t or #f, or a bubbled-up error.
;; `with` must be a type in weak-head normal form for structural matching.
-(define/contract (check expr with) (-> expr? type? boolean?)
- (check-core expr with #hash()))
-(define (check-core expr with Γ)
+(define (check expr with)
+ (check/core (desugar expr) with #hash()))
+(define/contract (check/core expr with Γ)
+ (-> stlc-full/expr? stlc-full/type? dict? boolean?)
(match expr
- ['sole 'Unit]
- [n #:when (natural? n) 'Nat]
- [b #:when (boolean? b) 'Bool]
- ; We expand into weak-head normal form as the binding may be whatever.
- [x #:when (dict-has-key? Γ x)
- (expand-whnf (dict-ref Γ x) Γ)]
-
[`(type ,t1 ,t2 ,e)
- (check-core e with (dict-set Γ `(type ,t1) t2))]
+ (check/core e with (dict-set Γ `(type ,t1) t2))]
[`(level ,l ,e) ; We add the level to the context just to note it is valid.
- (check-core e with (dict-set Γ `(level ,l) 'level))]
+ (check/core e with (dict-set Γ `(level ,l) 'level))]
[`(new ,e)
(match with
- [`(Ref ,t) (check-core e t Γ)]
+ [`(Ref ,t) (check/core e t Γ)]
[_ #f])]
[`(! ,e)
- (check-core e `(Ref ,with) Γ)]
+ (check/core e `(Ref ,with) Γ)]
[`(if ,c ,e1 ,e2)
- (and (check-core c 'Bool Γ)
- (check-core e1 with Γ) (check-core e2 with Γ))]
+ (and (check/core c 'Bool Γ)
+ (check/core e1 with Γ) (check/core e2 with Γ))]
[`(pair ,e1 ,e2)
(match with
- [`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))]
+ [`(,t1 × ,t2) (and (check/core e1 t1 Γ) (check/core e2 t2 Γ))]
[_ #f])]
[`(inl ,e)
(match with
- [`(,t1 ⊕ ,t2) (check-core e t1 Γ)]
+ [`(,t1 ⊕ ,t2) (check/core e t1 Γ)]
[_ #f])]
[`(inr ,e)
(match with
- [`(,t1 ⊕ ,t2) (check-core e t2 Γ)]
+ [`(,t1 ⊕ ,t2) (check/core e t2 Γ)]
[_ #f])]
; We do not technically need case in check form.
; We keep it here to avoid needing type annotations on `c`.
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
- (match (infer-core c Γ)
+ (match (infer/core c Γ)
[`(,a1 ⊕ ,a2)
- (and (check-core e1 with (dict-set Γ x1 a1))
- (check-core e2 with (dict-set Γ x2 a2)))]
+ (and (check/core e1 with (dict-set Γ x1 a1))
+ (check/core e2 with (dict-set Γ x2 a2)))]
[_ #f])]
[`(fold ,e)
(match with
- [`(μ ,x ,t) (check-core e t (dict-set Γ `(type ,x) `(μ ,x ,t)))]
+ [`(μ ,x ,t) (check/core e t (dict-set Γ `(type ,x) `(μ ,x ,t)))]
[_ #f])]
[`(λ (,x : ,t) ,e)
(match with
- [`(,t1 → ,l ,t2) ; KNOB
- (and (equiv-type t t1 Γ) (check-core e t2 (dict-set Γ x t))
- (> l (level-expr e (dict-set Γ x t1))))]
- [`(,t1 → ,t2) (err (format "missing level annotation on function type"))]
+ [`(,t1 → ,l ,t2)
+ (and (equiv-type t t1 Γ) (check/core e t2 (dict-set Γ x t))
+ (if impredicative?
+ (> l (level-expr e (dict-set Γ x t1)))
+ (>= l (level-expr e (dict-set Γ x t1)))))]
[_ #f])]
- [_ (equiv-type (infer-core expr Γ) with Γ)]))
+ [_ (equiv-type (infer/core expr Γ) with Γ)]))
;; Infers a type from a given expression, if possible. Errors out otherwise.
;; Returns a type in weak-head normal form for structural matching.
-(define/contract (infer expr) (-> expr? type?)
- (infer-core expr #hash()))
+(define (infer expr)
+ (infer/core (desugar expr) #hash()))
;; Γ is our context: a dictionary from symbols to types??? i forget actually
;; note: our context plays many roles.
-(define (infer-core expr Γ)
+(define/contract (infer/core expr Γ)
+ (-> stlc-full/expr? dict? stlc-full/type?)
(match expr
['sole 'Unit]
[n #:when (natural? n) 'Nat]
[b #:when (boolean? b) 'Bool]
; We expand into weak-head normal form as the binding may be to another binding.
[x #:when (dict-has-key? Γ x)
- (expand-whnf (dict-ref Γ x) Γ)]
+ (type->whnf (dict-ref Γ x) Γ)]
+ [f #:when (symbol? f)
+ (err (format "attempting to infer type of free variable ~a" f))]
[`(type ,t1 ,t2 ,e)
- (infer-core e (dict-set Γ `(type ,t1) t2))]
+ (infer/core e (dict-set Γ `(type ,t1) t2))]
[`(,e : ,t)
- (if (check-core e (expand-whnf t Γ) Γ) (expand-whnf t Γ)
+ (if (check/core e (type->whnf t Γ) Γ) (type->whnf t Γ)
(err (format "expression ~a is not of annotated type ~a" e t)))]
[`(level ,l ,e) ; We add the level to the context just to note it is valid.
- (infer-core e (dict-set Γ `(level ,l) 'level))]
- [`(,e ⇑ ,l) ; We retrieve the level from the context to check it is valid.
+ (infer/core e (dict-set Γ `(level ,l) 'level))]
+ [`(,e :: ,l) ; We retrieve the level from the context to check it is valid.
(if (dict-has-key? Γ `(level ,(level-base l)))
- (infer-core e Γ)
+ (infer/core e Γ)
(err (format "level ~a not found in context, was it introduced?")))]
[`(new ,e)
- `(Ref ,(infer-core e Γ))]
+ `(Ref ,(infer/core e Γ))]
[`(ptr ,a)
(err (format "cannot infer type from raw pointer ~a" `(ptr ,a)))]
[`(! ,e)
- (match (infer-core e Γ)
+ (match (infer/core e Γ)
[`(Ref ,t) t]
[t (err (format "attempting to deref term ~a of type ~a" e t))])]
[`(set ,e1 ,e2) ; FIXME: this does not account for explicit allocation syntax!
- (match (infer-core e1 Γ) ; should we check levels?
+ (match (infer/core e1 Γ) ; should we check levels?
[`(Ref ,t)
- (if (check-core e2 t Γ) 'Unit
+ (if (check/core e2 t Γ) 'Unit
(err (format "attempting to update ~a: ~a with term ~a: ~a of differing type"
- e1 t e2 (infer-core e2 Γ))))]
+ e1 t e2 (infer/core e2 Γ))))]
[t (err (format "attempting to update non-reference ~a: ~a" e1 t))])]
[`(inc ,e)
- (if (check-core e 'Nat Γ) 'Nat
- (err (format "calling inc on incorrect type ~a, expected Nat" (infer-core e Γ))))]
+ (if (check/core e 'Nat Γ) 'Nat
+ (err (format "calling inc on incorrect type ~a, expected Nat" (infer/core e Γ))))]
[`(if ,c ,e1 ,e2)
- (if (check-core c 'Bool Γ)
- (let ([t (infer-core e1 Γ)])
- (if (check-core e2 t Γ) t
- (err (format "if ~a is not of consistent type!"
- `(if Bool ,t ,(infer-core e2 Γ))))))
+ (if (check/core c 'Bool Γ)
+ (let ([t (infer/core e1 Γ)])
+ (if (check/core e2 t Γ) t
+ (err (format "if ~a is not of consistent type!"
+ `(if Bool ,t ,(infer/core e2 Γ))))))
(err (format "if ~a has incorrect type ~a on condition, expected Bool"
- c (infer-core c Γ))))]
+ c (infer/core c Γ))))]
[`(pair ,e1 ,e2)
- `(,(infer-core e1 Γ) × ,(infer-core e2 Γ))]
+ `(,(infer/core e1 Γ) × ,(infer/core e2 Γ))]
[`(car ,e)
- (match (infer-core e Γ)
+ (match (infer/core e Γ)
[`(,t1 × ,t2) t1]
[t (err (format "calling car on incorrect type ~a, expected a product" t))])]
[`(cdr ,e)
- (match (infer-core e Γ)
+ (match (infer/core e Γ)
[`(,t1 × ,t2) t2]
[t (err (format "calling cdr on incorrect type ~a, expected a product" t))])]
@@ -761,34 +776,32 @@
[`(inr ,e)
(err (format "unable to infer the type of a raw inr"))]
[`(case ,c (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
- (match (infer-core c Γ)
+ (match (infer/core c Γ)
[`(,a1 ⊕ ,a2)
- (let ([b1 (infer-core e1 (dict-set Γ x1 a1))]
- [b2 (infer-core e2 (dict-set Γ x2 a2))])
- (if (equiv-type b1 b2 Γ) b1
- (err (format "case ~a is not of consistent type!"
- `(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))]
+ (let ([b1 (infer/core e1 (dict-set Γ x1 a1))]
+ [b2 (infer/core e2 (dict-set Γ x2 a2))])
+ (if (equiv-type b1 b2 Γ) b1
+ (err (format "case ~a is not of consistent type!"
+ `(case (,a1 ⊕ ,a2) (,x1 ⇒ ,b1) (,x2 ⇒ ,b2))))))]
[t (err (format "case has incorrect type ~a on condition, expected a sum" t))])]
[`(unfold ,e)
- (match (infer-core e Γ)
+ (match (infer/core e Γ)
[`(μ ,x ,t) (replace-type t x `(μ ,x ,t))]
[t (err (format "expected ~a to be of recursive type, got ~a" e t))])]
- [`(λ (,x : ,t1) ,e) ; KNOB
- (let* ([t2 (infer-core e (dict-set Γ x t1))]
- [t1 (expand-whnf t1 Γ)] [l (+ 1 (level-expr e (dict-set Γ x t1)))])
- `(,t1 → ,l ,t2))]
+ [`(λ (,x : ,t1) ,e)
+ (let* ([t2 (infer/core e (dict-set Γ x t1))]
+ [t1 (type->whnf t1 Γ)]
+ [l (level-expr e (dict-set Γ x t1))])
+ `(,t1 → ,(if impredicative? (+ l 1) l) ,t2))]
[`(,e1 ,e2)
- (match (infer-core e1 Γ)
+ (match (infer/core e1 Γ)
[`(,t1 → ,l ,t2) ; should we check levels here? probably redundant
- (if (check-core e2 t1 Γ) t2
+ (if (check/core e2 t1 Γ) t2
(err (format "inferred argument type ~a does not match arg ~a of type ~a"
- t1 e2 (infer-core e2 Γ))))]
- [`(,t1 → ,t2) (err (format "missing level annotation on function type"))]
- [t (err (format "expected → type on application body, got ~a" t))])]
-
- [_ (err (format "attempting to infer an unknown expression ~a" expr))]))
+ t1 e2 (infer/core e2 Γ))))]
+ [t (err (format "expected → type on application body, got ~a" t))])]))
;; Define aliases from higher-level constructs to lower-level core forms.
@@ -798,7 +811,7 @@
['⟨⟩ 'sole]
[`(ref ,e) (desugar `(new ,e))]
[`(deref ,e) (desugar `(! ,e))]
- [`(,e :: ,k) (desugar `(,e ⇑ ,k))]
+ [`(,e ⇑ ,k) (desugar `(,e :: ,k))]
; set-with-continuation
[`(set ,e1 ,e2 ,in)
@@ -826,7 +839,7 @@
;; (type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
(check-equal?
- (call-by-value (desugar '
+ (call-by-value '
(let (next : ((μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) → 1
(μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))
(λ (self : (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)))
@@ -839,31 +852,31 @@
(pair 413
(pair (new (inr sole))
(new (inr sole))))))
- (next my_list)))))
+ (next my_list))))
'(inr sole))
(check-equal?
- (infer (desugar '
+ (infer '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(λ (self : DoublyLinkedList)
(case (unfold self)
(some ⇒ ((! (cdr (cdr some))) : DoublyLinkedList))
- (none ⇒ ((fold (inr sole)) : DoublyLinkedList)))))))
+ (none ⇒ ((fold (inr sole)) : DoublyLinkedList))))))
'((μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit)) → 1 (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))
(check-true
(equiv-type
- (infer (desugar '
+ (infer '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(λ (self : DoublyLinkedList)
(case (unfold self)
(some ⇒ (! (cdr (cdr some))))
- (none ⇒ ((fold (inr sole)) : DoublyLinkedList)))))))
+ (none ⇒ ((fold (inr sole)) : DoublyLinkedList))))))
'(DoublyLinkedList → 1 DoublyLinkedList)
#hash(((type DoublyLinkedList) . (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))))))
(check-true
- (check (desugar '
+ (check '
(type DoublyLinkedList (μ Self ((Nat × ((Ref Self) × (Ref Self))) ⊕ Unit))
(let (get : (DoublyLinkedList → 1 (Nat ⊕ Unit)))
(λ self
@@ -885,5 +898,5 @@
(pair 413
(pair (new ((fold (inr sole)) : DoublyLinkedList))
(new ((fold (inr sole)) : DoublyLinkedList))))))
- (prev my_list)))))))
+ (prev my_list))))))
'DoublyLinkedList))