1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
#lang racket
(require "lib.rkt")
(require "base.rkt")
(provide interpret check infer expand equiv-type equiv-term)
;; The Simply-Typed Lambda Calculus, with simple extensions
;; Unit/String/Natural/Boolean, pairs, sums, lists, ascryption
;; (interpret Expr Table[Sym, Expr]): Value
(define (interpret expr)
(interpret-core (strip (desugar expr)) #hash()))
(define (interpret-core expr Γ)
(match expr
['sole 'sole]
[s #:when (string? s) s]
[n #:when (natural? n) n]
[b #:when (boolean? b) b]
[x #:when (dict-has-key? Γ x) (dict-ref Γ x)]
[`(inc ,e)
(match (interpret-core e Γ)
[n #:when (natural? n) (+ n 1)]
[e (format "incrementing an unknown value ~a" e)])]
[`(if ,c ,e1 ,e2)
(match (interpret-core c Γ)
['#t (interpret-core e1 Γ)]
['#f (interpret-core e2 Γ)]
[e (err (format "calling if on unknown expression ~a" e))])]
[`(pair ,e1 ,e2)
`(pair ,(interpret-core e1 Γ) ,(interpret-core e2 Γ))]
[`(car ,e)
(match (interpret-core e Γ)
[`(pair ,e1 ,e2) e1]
[e (err (format "calling car on unknown expression ~a" e))])]
[`(cdr ,e)
(match (interpret-core e Γ)
[`(pair ,e1 ,e2) e2]
[e (err (format "calling cdr on unknown expression ~a" e))])]
[`(inl ,e) `(inl ,(interpret-core e Γ))]
[`(inr ,e) `(inr ,(interpret-core e Γ))]
[`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (interpret-core e Γ)
[`(inl ,e) (interpret-core e1 (dict-set Γ x1 e))]
[`(inr ,e) (interpret-core e2 (dict-set Γ x2 e))]
[e (err (format "calling case on unknown expression ~a" e))])]
['nil 'nil]
[`(nil? ,e)
(match (interpret-core e Γ)
['nil '#t]
[`(cons ,e1 ,e2) '#f]
[e (err (format "calling isnil on unknown expression ~a" e))])]
[`(cons ,e1 ,e2)
`(cons ,(interpret-core e1 Γ) ,(interpret-core e2 Γ))]
[`(head ,e)
(match (interpret-core e Γ)
[`(cons ,e1 ,e2) (interpret-core e1 Γ)]
[e (err (format "calling head on unknown expression ~a" e))])]
[`(tail ,e)
(match (interpret-core e Γ)
[`(cons ,e1 ,e2) (interpret-core e2 Γ)]
[e (err (format "calling tail on unknown expression ~a" e))])]
[`(λ ,x ,e) `(λ ,x ,e ,Γ)]
[`(,e1 ,e2)
(match (interpret-core e1 Γ)
[`(λ ,x ,e ,env)
(interpret-core e (dict-set env x (interpret-core e2 Γ)))]
[e (err (format "applying arg ~a to unknown expression ~a" e2 e))])]
[e (err (format "interpreting an unknown expression ~a" e))]))
;; (check Expr Type Table[Sym, Type]): Bool
(define (check expr with)
(check-core (desugar expr) with #hash()))
(define (check-core expr with Γ)
(match expr
[`(type ,t1 ,t2 ,in)
(check-core in with (dict-set Γ t1 t2))]
[`(if ,c ,e1 ,e2)
(and (check-core c 'Bool Γ)
(check-core e1 with Γ) (check-core e2 with Γ))]
[`(pair ,e1 ,e2)
(match with
[`(,t1 × ,t2) (and (check-core e1 t1 Γ) (check-core e2 t2 Γ))]
[_ #f])]
[`(inl ,e)
(match with
[`(,t1 ⊕ ,t2) (check-core e t1 Γ)]
[_ #f])]
[`(inr ,e)
(match with
[`(,t1 ⊕ ,t2) (check-core e t2 Γ)]
[_ #f])]
[`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (infer-core e Γ)
[`(,a1 ⊕ ,a2)
(and (check-core e1 with (dict-set Γ x1 a1))
(check-core e2 with (dict-set Γ x2 a2)))]
[_ #f])]
['nil
(match with
[`(List ,t) #t]
[_ #f])]
[`(cons ,f1 ,f2)
(match with
[`(List ,t)
(and (check-core f1 t Γ)
(check-core f2 `(List ,t) Γ))]
[_ #f])]
[`(λ (,x : ,t) ,e)
(match with
[`(,t1 → ,t2)
(and (equiv-type t1 t Γ) (check-core e t2 (dict-set Γ x t1)))]
[_ #f])]
[_ (equiv-type (infer-core expr Γ) with Γ)]))
;; (infer Expr Table[Sym, Type]): Type
(define (infer expr)
(infer-core (desugar expr) #hash()))
(define (infer-core expr Γ)
(match expr
['sole 'Unit]
[s #:when (string? s) 'Str]
[n #:when (natural? n) 'Nat]
[b #:when (boolean? b) 'Bool]
[x #:when (dict-has-key? Γ x)
(expand (dict-ref Γ x) Γ)]
[`(type ,t1 ,t2 ,in)
(infer-core in (dict-set Γ t1 t2))]
[`(,e : ,t)
(if (check-core e (expand t Γ) Γ) (expand t Γ)
(err (format "annotated expression ~a is not of annotated type ~a" e t)))]
[`(inc ,e)
(if (check-core e 'Nat Γ) 'Nat
(err (format "calling inc on incorrect type ~a" (infer-core e Γ))))]
[`(if ,c ,e1 ,e2)
(if (check-core c 'Bool Γ)
(let ([t (infer-core e1 Γ)])
(if (check-core e2 t Γ) t
(err (format "condition has branches of differing types ~a and ~a"
t (infer-core e2 Γ)))))
(err (format "condition ~a has incorrect type ~a" c (infer-core c Γ))))]
[`(pair ,e1 ,e2)
`(,(infer-core e1 Γ) × ,(infer-core e2 Γ))]
[`(car ,e)
(match (infer-core e Γ)
[`(,t1 × ,t2) t1]
[t (err (format "calling car on incorrect type ~a" t))])]
[`(cdr ,e)
(match (infer-core e Γ)
[`(,t1 × ,t2) t2]
[t (err (format "calling cdr on incorrect type ~a" t))])]
[`(inl ,e) ; annotations necessary
(match (infer-core e Γ)
[`(,t1 ⊕ ,t2) `(,t1 ⊕ ,t2)]
[t (err (format "calling inl on incorrect type ~a" t))])]
[`(inr ,e) ; annotations necessary
(match (infer-core e Γ)
[`(,t1 ⊕ ,t2) `(,t1 ⊕ ,t2)]
[t (err (format "calling inr on incorrect type ~a" t))])]
[`(case ,e (,x1 ⇒ ,e1) (,x2 ⇒ ,e2))
(match (infer-core e Γ)
[`(,a1 ⊕ ,a2)
(let ([b1 (infer-core e1 (dict-set Γ x1 (expand a1 Γ)))]
[b2 (infer-core e2 (dict-set Γ x2 (expand a2 Γ)))])
(if (equiv-type b1 b2 Γ) b1
(err (format "case ~a is not of consistent type!" `(case (,a1 ⊕ ,a2) b1 b2)))))]
[t (err (format "calling case on incorrect type ~a" t))])]
['nil (err (format "unable to infer type of empty list!"))]
[`(cons ,e1 ,e2)
(let ([t (infer-core e1 Γ)])
(if (check-core e2 `(List ,t) Γ) `(List ,t)
(err (format "list ~a is not of consistent type!" `(cons ,e1 ,e2)))))]
[`(head ,e)
(match (infer-core e Γ)
[`(List ,t) t]
[t (err (format "calling head on incorrect type ~a" t))])]
[`(tail ,e)
(match (infer-core e Γ)
[`(List ,t) `(List ,t)]
[t (err (format "calling tail on incorrect type ~a" t))])]
[`(λ (,x : ,t) ,e)
`(,(expand t Γ) → ,(infer-core e (dict-set Γ x t)))]
[`(,e1 ,e2)
(match (infer-core e1 Γ)
[`(,t1 → ,t2)
(if (check-core e2 t1 Γ) t2
(err (format "inferred argument type ~a does not match arg ~a" t1 e2)))]
[t (err (format "expected → type on application body, got ~a" t))])]
[e (err (format "inferring an unknown expression ~a" e))]))
;; Expands a type alias into weak-head normal form, for literal matching.
;; (expand Type Table[Id, Expr ⊕ Type]): Type
(define (expand t Γ)
(if (dict-has-key? Γ `(type ,t))
(expand (dict-ref Γ `(type ,t)) Γ) t))
;; Checks if two types are equivalent up to α-conversion in context
;; (equiv-type Expr Expr Table[Sym Expr]): Bool
(define (equiv-type e1 e2 Γ)
(equiv-type-core e1 e2 Γ Γ))
(define (equiv-type-core e1 e2 Γ1 Γ2)
(match* (e1 e2)
; bound identifiers: if a key exists in the context, look it up
[(x1 x2) #:when (dict-has-key? Γ1 x1)
(equiv-type-core (dict-ref Γ1 x1) x2 Γ1 Γ2)]
[(x1 x2) #:when (dict-has-key? Γ2 x2)
(equiv-type-core x1 (dict-ref Γ2 x2) Γ1 Γ2)]
; check for syntactic equivalence on remaining forms
[(`(,l1 ...) `(,l2 ...))
(foldl (λ (x1 x2 acc) (if (equiv-type-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
[(v1 v2) (equal? v1 v2)]))
;; Checks if two terms are equivalent up to α-conversion in context
;; (equiv-term Expr Expr Table[Sym Expr]): Bool
(define (equiv-term e1 e2 Γ)
(equiv-term-core e1 e2 Γ Γ))
(define (equiv-term-core e1 e2 Γ1 Γ2)
(match* (e1 e2)
; bound identifiers: if a key exists in the context, look it up
[(x1 x2) #:when (dict-has-key? Γ1 x1)
(equiv-term-core (dict-ref Γ1 x1) x2 Γ1 Γ2)]
[(x1 x2) #:when (dict-has-key? Γ2 x2)
(equiv-term-core x1 (dict-ref Γ2 x2) Γ1 Γ2)]
; function expressions: parameter names can be arbitrary
[(`(λ (,x1 : ,t1) ,e1) `(λ (,x2 : ,t2) ,e2))
(let ([name gensym])
(and (equiv-term-core e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name))
(equiv-term-core t1 t2 Γ1 Γ2)))]
[(`(λ ,x1 ,e1) `(λ ,x2 ,e2))
(let ([name gensym])
(equiv-term-core e1 e2 (dict-set Γ1 x1 name) (dict-set Γ2 x2 name)))]
; check for syntactic equivalence on remaining forms
[(`(,l1 ...) `(,l2 ...))
(foldl (λ (x1 x2 acc) (if (equiv-term-core x1 x2 Γ1 Γ2) acc #f)) #t l1 l2)]
[(v1 v2) (equal? v1 v2)]))
|