summaryrefslogtreecommitdiff
path: root/mathematics/algebra.md
diff options
context:
space:
mode:
Diffstat (limited to 'mathematics/algebra.md')
-rw-r--r--mathematics/algebra.md8
1 files changed, 4 insertions, 4 deletions
diff --git a/mathematics/algebra.md b/mathematics/algebra.md
index 5434ff9..5047970 100644
--- a/mathematics/algebra.md
+++ b/mathematics/algebra.md
@@ -14,7 +14,7 @@ these structures are very general: and so results from abstract algebra can be a
An **algebraic structure** is a set with a collection of *operations* and a finite set of *axioms* those operations must satisfy.
A **group** $G$ is a set with a single binary operation ⋆ satisfying the following axioms:
-- associativity: $∀a,b,c : (a⋆b)⋆c = a⋆(b⋆c)
+- associativity: $∀a,b,c : (a⋆b)⋆c = a⋆(b⋆c)$
- identity: $∃e, ∀a : e⋆a = a⋆e = a$
- inverse: $∀a, ∃a^{-1} : a⋆a^{-1} = e$
- An Abelian or **commutative group** satisfies an additional axiom:
@@ -24,12 +24,12 @@ A **monoid** is a group without an inverse operation.
A **ring** $R$ is a set with two binary operations + and × satisfying the following axioms:
- $(R, +)$ is a *commutative group*:
- - associativity: $∀a,b,c : (a+b)+c = a+(b+c)
+ - associativity: $∀a,b,c : (a+b)+c = a+(b+c)$
- additive identity: $∃0, ∀a : 0+a = a+0 = a$
- additive inverse: $∀a, ∃-a : a+(-a) = 0$
- commutativity: $∀a,b : a+b=b+a$
- $(R, ×)$ is a *monoid*
- - associativity: $∀a,b,c : (a×b)×c = a×(b×c)
+ - associativity: $∀a,b,c : (a×b)×c = a×(b×c)$
- multiplicative identity: $∃1, ∀a : 1×a = a×1 = a$
- The *distributive laws* hold for + and ×:
- $∀a,b,c : (a+b) × c = (a×c)+(b×c)$
@@ -41,7 +41,7 @@ A **field** is a *commutative ring* where $0 ≠ 1$ and all elements sans $0$ ha
A **vector space** $V$ over a field $F$ of scalars is a set with a binary operation + and a binary function satisfying the following axioms:
- $(V, +)$ is a *commutative group*:
- - associativity: $∀u,v,w : (u+v)+w = u+(v+w)
+ - associativity: $∀u,v,w : (u+v)+w = u+(v+w)$
- additive identity: $∃0, ∀v: 0+v = v+0 = v$
- additive inverse: $∀v, ∃-v: v+(-v) = 0$
- commutativity: $∀u,v : u+v=v+u$