1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
---
layout: algebra
title: mathematics/algebra
---
# algebra
modern algebra is the study of **algebraic structures**: groups, rings, fields, modules, vector spaces, lattices, and the like.
these structures are very general: and so results from abstract algebra can be applied to a wide variety of situations.
## structures
An **algebraic structure** is a set with a collection of *operations* and a finite set of *axioms* those operations must satisfy.
A **group** $G$ is a set with a single binary operation ⋆ satisfying the following axioms:
- associativity: $∀a,b,c : (a⋆b)⋆c = a⋆(b⋆c)
- identity: $∃e, ∀a : e⋆a = a⋆e = a$
- inverse: $∀a, ∃a^{-1} : a⋆a^{-1} = e$
- An Abelian or **commutative group** satisfies an additional axiom:
- commutativity: $∀a,b : a⋆b=b⋆a$
A **monoid** is a group without an inverse operation.
A **ring** $R$ is a set with two binary operations + and × satisfying the following axioms:
- $(R, +)$ is a *commutative group*:
- associativity: $∀a,b,c : (a+b)+c = a+(b+c)
- additive identity: $∃0, ∀a : 0+a = a+0 = a$
- additive inverse: $∀a, ∃-a : a+(-a) = 0$
- commutativity: $∀a,b : a+b=b+a$
- $(R, ×)$ is a *monoid*
- associativity: $∀a,b,c : (a×b)×c = a×(b×c)
- multiplicative identity: $∃1, ∀a : 1×a = a×1 = a$
- The *distributive laws* hold for + and ×:
- $∀a,b,c : (a+b) × c = (a×c)+(b×c)$
- $∀a,b,c : a × (b+c) = (a×b) + (a×c)$
- An Abelian or **commutative ring** satisfies an additional axiom:
- commutativity (of ×): $∀a,b : a×b=b×a$
A **field** is a *commutative ring* where $0 ≠ 1$ and all elements sans $0$ have an inverse $a^{-1}$ under multiplication.
A **vector space** $V$ over a field $F$ of scalars is a set with a binary operation + and a binary function satisfying the following axioms:
- $(V, +)$ is a *commutative group*:
- associativity: $∀u,v,w : (u+v)+w = u+(v+w)
- additive identity: $∃0, ∀v: 0+v = v+0 = v$
- additive inverse: $∀v, ∃-v: v+(-v) = 0$
- commutativity: $∀u,v : u+v=v+u$
- $(V, )$ is a *scalar operation*:
- scalar identity: $∃1 ∈ F : 1v = v1 = v$
- commutativity: $∀a,b ∈ F, ∀v ∈ V (ab)v = a(bv)$
- The *distributive laws* hold:
- $∀a ∈ F, ∀u,v ∈ V : a(u+v) = au+av$
- $∀a,b ∈ F, ∀v ∈ V : (a+b)v = av + bv$
A **module** $M$ is a generalization of a *vector space* to function over a ring $R$ instead of a field.
A **lattice** $L$ is a set with two binary operations ∧ and ∨ satisfying the following axioms:
- commutativity:
- $∀a,b : a ∧ b = b ∧ a$
- $∀a,b : a ∨ b = b ∨ a$
- associativity:
- $∀a,b,c : a ∧ (b ∧ c) = (a ∧ b) ∧ c$
- $∀a,b,c : a ∨ (b ∨ c) = (a ∨ b) ∨ c$
- absorption:
- $∀a,b : a ∧ (a ∨ b) = a$
- $∀a,b : a ∨ (a ∧ b) = a$
- idempotence:
- $∀a : a ∧ a = a$
- $∀a : a ∨ a = a$
## group theory
## ring theory
## galois theory
## linear algebra
## order theory
a lattice may alternatively be defined as...
|