summaryrefslogtreecommitdiff
path: root/mathematics/algebra.md
diff options
context:
space:
mode:
authorJJ2024-01-18 21:46:20 +0000
committerJJ2024-01-18 21:46:20 +0000
commitde2f686c1688c03f61bae66424ca153213241642 (patch)
tree477dcac2ca220d868372f501a3771154b4804d18 /mathematics/algebra.md
parent78b0e792da328767c5f405dedae6f95e5973f097 (diff)
meow
Diffstat (limited to 'mathematics/algebra.md')
-rw-r--r--mathematics/algebra.md75
1 files changed, 75 insertions, 0 deletions
diff --git a/mathematics/algebra.md b/mathematics/algebra.md
index 5838147..5434ff9 100644
--- a/mathematics/algebra.md
+++ b/mathematics/algebra.md
@@ -4,3 +4,78 @@ title: mathematics/algebra
---
# algebra
+
+modern algebra is the study of **algebraic structures**: groups, rings, fields, modules, vector spaces, lattices, and the like.
+
+these structures are very general: and so results from abstract algebra can be applied to a wide variety of situations.
+
+## structures
+
+An **algebraic structure** is a set with a collection of *operations* and a finite set of *axioms* those operations must satisfy.
+
+A **group** $G$ is a set with a single binary operation ⋆ satisfying the following axioms:
+- associativity: $∀a,b,c : (a⋆b)⋆c = a⋆(b⋆c)
+- identity: $∃e, ∀a : e⋆a = a⋆e = a$
+- inverse: $∀a, ∃a^{-1} : a⋆a^{-1} = e$
+- An Abelian or **commutative group** satisfies an additional axiom:
+ - commutativity: $∀a,b : a⋆b=b⋆a$
+
+A **monoid** is a group without an inverse operation.
+
+A **ring** $R$ is a set with two binary operations + and × satisfying the following axioms:
+- $(R, +)$ is a *commutative group*:
+ - associativity: $∀a,b,c : (a+b)+c = a+(b+c)
+ - additive identity: $∃0, ∀a : 0+a = a+0 = a$
+ - additive inverse: $∀a, ∃-a : a+(-a) = 0$
+ - commutativity: $∀a,b : a+b=b+a$
+- $(R, ×)$ is a *monoid*
+ - associativity: $∀a,b,c : (a×b)×c = a×(b×c)
+ - multiplicative identity: $∃1, ∀a : 1×a = a×1 = a$
+- The *distributive laws* hold for + and ×:
+ - $∀a,b,c : (a+b) × c = (a×c)+(b×c)$
+ - $∀a,b,c : a × (b+c) = (a×b) + (a×c)$
+- An Abelian or **commutative ring** satisfies an additional axiom:
+ - commutativity (of ×): $∀a,b : a×b=b×a$
+
+A **field** is a *commutative ring* where $0 ≠ 1$ and all elements sans $0$ have an inverse $a^{-1}$ under multiplication.
+
+A **vector space** $V$ over a field $F$ of scalars is a set with a binary operation + and a binary function satisfying the following axioms:
+- $(V, +)$ is a *commutative group*:
+ - associativity: $∀u,v,w : (u+v)+w = u+(v+w)
+ - additive identity: $∃0, ∀v: 0+v = v+0 = v$
+ - additive inverse: $∀v, ∃-v: v+(-v) = 0$
+ - commutativity: $∀u,v : u+v=v+u$
+- $(V, )$ is a *scalar operation*:
+ - scalar identity: $∃1 ∈ F : 1v = v1 = v$
+ - commutativity: $∀a,b ∈ F, ∀v ∈ V (ab)v = a(bv)$
+- The *distributive laws* hold:
+ - $∀a ∈ F, ∀u,v ∈ V : a(u+v) = au+av$
+ - $∀a,b ∈ F, ∀v ∈ V : (a+b)v = av + bv$
+
+A **module** $M$ is a generalization of a *vector space* to function over a ring $R$ instead of a field.
+
+A **lattice** $L$ is a set with two binary operations ∧ and ∨ satisfying the following axioms:
+- commutativity:
+ - $∀a,b : a ∧ b = b ∧ a$
+ - $∀a,b : a ∨ b = b ∨ a$
+- associativity:
+ - $∀a,b,c : a ∧ (b ∧ c) = (a ∧ b) ∧ c$
+ - $∀a,b,c : a ∨ (b ∨ c) = (a ∨ b) ∨ c$
+- absorption:
+ - $∀a,b : a ∧ (a ∨ b) = a$
+ - $∀a,b : a ∨ (a ∧ b) = a$
+- idempotence:
+ - $∀a : a ∧ a = a$
+ - $∀a : a ∨ a = a$
+
+## group theory
+
+## ring theory
+
+## galois theory
+
+## linear algebra
+
+## order theory
+
+a lattice may alternatively be defined as...